
 1 

A Java Extension With Support for Dimensions 
André van Delft 

Published in Software - Practice and Experience 29(7), Wiley, 1999 

Summary 

We present an extension to the Java language with support for physical dimensions and units of measurement. This 

should reduce programming errors in scientific and technological areas. We discuss various aspects of dimensions and 

units, and then design principles for support in programming languages. An overview of earlier work shows that some 

language extensions focused on units, whereas we argue that dimensions are a better starting point; units can then 

simply be treated as constants. 

Then we present the Java extension, and show how to define and use dimensions and units. The communication 

between the program and the outer world gets special attention. The programmer can still make dimensional errors 

there, but we claim the risk is reduced. 

It has been simple to build support for this extension into an existing Java compiler. We outline the applied technique. 

Introduction 

Computing in scientific and technological areas largely deals with manipulating numbers that represent physical 

dimensions, such as time, mass, and force. A common source of errors is to confuse quantities that are related to 

different units of measurement. For instance, in a chemical engineering simulation program, a variable representing a 

number of kilograms of a substance, may be accidentally be taken as a number of grams, a number of liters, or a 

number of moles. It is possible to extend existing programming languages so that many of such errors are prevented, 

by providing support for dimensions and units of measurement. We did so for the Java language; our approach seems 

applicable for other strongly typed languages as well. 

Dimensions and Units 

A dimension is a class of similar scales, comparable to the notion of type in programming languages. A unit is a 

specific instance of a dimension; it serves as a reference for measuring quantities of the same dimension. In fact, any 

nonzero instance of a dimension can serve as a unit, even if it is not constant, such as a person's length. 

Some physical dimensions may be considered more basic than others. There are 7 base dimensions for physics defined 

in the International System of Units (SI): length, mass, time, electric current, thermodynamic temperature, amount of 

substance, luminous intensity. For each of the SI base dimensions a primary unit exits: meter, kilogram, second, 

Ampere, Kelvin, mole, Candela. One may also think of different base dimensions, such as money (with unit Dollar, 

for instance) and amount of storage in computing (with unit byte). 

Multiplication and division of dimensions yield other dimensions; some of these dimensions have special names, e.g.,  

• length divided by time equals speed 

• speed divided by time equals acceleration 

• mass times acceleration equals force 

• speed times speed is also a dimension; yet we don’t have a special name 

Multiplication and division of units yields other units:, e.g.,  

• kilogram times meter divided by (second times second) equals Newton 

• Meter divided by second (or: meter per second) is also a unit, though we don’t have a special name 

It is also possible to multiply or divide a unit by a number; the result can also be used as a unit, as in:  

• A meter divided by 100 gives a centimeter 

• 2.54 centimeters equals an inch 

Multiplication and division are allowed on values of any dimension. Addition, subtraction and comparison only make 

sense when applied on values with equal dimension. In a programming language with proper support for dimensions 

and units, we would be allowed to add directly 2.0 meter to 3.0 centimeter, yielding 2.03 meter. Without the support, 
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we should be cautious not to add a number of meters (2.0) directly to a number of centimeters (3.0); we should apply 

an explicit conversion instead: 2.0+0.01*3.0. 

Some units have a false origin, such as degrees Celsius and degrees Fahrenheit when used for absolute temperatures. 

E.g., zero degrees Celsius as an absolute temperature means 273 Kelvin, whereas zero Kelvin is the lowest thinkable 

temperature. An addition of two temperatures expressed in Celsius raises suspicion. E.g., should 0 degrees Celsius 

plus 0 degrees Celsius equal 0 degrees Celsius or 273 Celsius? Such an addition makes sense in the context of 

computing the mean of two absolute temperatures, as in (t1+t2)/2. Other appropriate contexts are the addition of two 

temperature differences, and of a difference and an absolute temperature. It cannot be left to a compiler to decide 

whether such a context applies. Therefore dedicated support in the programming language for false origins could turn 

out to be confusing; for sake of simplicity, handling false origins may be left to conversion functions. 

Design Principles 

There are many ways to add support for dimensions and units to existing programming languages; to judge the 

usefulness one may consider the general set of design principles by Bentley [1] for programming languages; these 

principles also apply for extensions with dimension support: 

• Design goals: extend a widely used programming language with sound support for physical dimensions and 

units of measurement, without performance penalty. 

• Simplicity: the extension must be simple, both for the user and for the implementation. 

• Fundamental Abstractions: it should be possible to define base dimensions with corresponding base units, and 

derived dimensions. Other units may be expressed as constants in terms of base units. 

• Linguistic structure: to express derived dimensions it should be permitted to write plain multiplications and 

divisions of dimensions 

• Yardsticks of language design: desirable properties are: 

• Orthogonality: the notion of dimension is in principle independent of numeric precision (integer, floating 

point). 

• Generality: it should be possible to have generic functions that operate on parameters of any dimension, 

e.g., to summarize arrays. 

• Parsimony: introduce as few new keywords as possible; prevent large changes to the syntax of value 

expressions. 

• Completeness: multiplying and dividing dimensions should always yield other valid dimensions. 

• Similarity: dimensions may be multiplied and divided, analogous to numbers. 

• Extensibility: rather than this property, we’ll strive for the inverse property Conservation since we are 

already dealing with a language extension: existing programs in the base language should also be valid in 

the extension, except for the use of identifiers that become new keywords. 

• Openness: Functions in external libraries that are not aware of dimensions must be accessible.  

• The design process: experience with an implementation may change the design.  

• Insights from compiler building: dimensions may possibly have a different name space than other language 

constructs such as variables and types. For parsing programs the set of valid dimension names should not need 

to be known in advance. 

Earlier work 

In an early paper [2] Karr and Loveman make an important remark:  

The essential point for us is that units may be carried along in calculations, where they act like “variables”, obeying 

commutativity, associativity, laws of exponents, etc.: 

G= 32(feet/sec)/sec = 32 feet/sec2. 

From the point of view of calculating, we can actually regard the “32” as being multiplied by the expression 

“feet/sec2”. 
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Later the paper states that syntactically there need be no distinction between a variable and a unit. This agrees with 

our earlier statement that any instance of a dimension can serve as a unit. Then Karr and Loveman suggest expressions 

such as  

2*WEEKS + 5*DAYS 

So units can be incorporated without change in expression syntax. An alternative syntax would allow: 

2 WEEKS + 5 DAYS 

This binding by a space adds to syntactic complexity; that should be avoided especially because it is not necessary. It 

won’t take programmers too long to get used to writing an asterisk between numbers and units. Since units can be 

viewed as variables (usually constants), language support for dimensions should not focus on units. Unfortunately, the 

remarks by Karr and Loveman have had little impact in most subsequent proposals to extend programming languages 

with dimension support. 

House [3] starts from unit definitions. He confuses units with dimensions in the quote:   

dim volume: metre**3;  

    newton: metre*kg*sec**(-2); 

House's proposal allows for generic functions such as 

function SQRT (x: real newdim whatever): real dim whatever**(1/2); 

This comes at the significant cost of introducing dimension variables, a kind of identifiers next to variables and 

functions; they are in fact not needed to allow for generic functions. House mentiones the issue of access to existing 

libraries that are not aware of dimensions, but he fails to address it. 

Gehani [4] also emphasizes on units, as in his example  

V: FLOAT {MILES HOUR-1}; 

A: FLOAT {MILES HOUR-2}; 

T: FLOAT {HOUR}; 

S: FLOAT {MILES}; 

S = V*T + 0.5*A*T*T; 

Gehani does not give syntax for defining units. 

Männer's [5]. offers starting language constructs to define units. He confuses the concepts unit and dimension as 

witnessed by the quote: "…CallDistance has the dimension cm". His examples suggest that his proposal only allows 

dimension types to be specified as subrange types, such as  

TYPE Energy = 0 Mev .. 1e3 MeV; 

Dreiheller [6] also start from unit definitions; the supporting language constructs are rather complicated. Dimension 

types may be specified in phrases such as  

TYPE Energy = REAL [MeV]; 

A better way to define energy would be as a definition in terms of base dimensions length, mass and time. 

Baldwin [7] fails to provide syntax and programming examples, so his contribution is unclear.  

More recently Wand and O'Keefe [8], Goubault [9] and Kennedy [10] have tackled dimension type inference, 

determining polymorphic dimension types in the absence of programmer-provided type information. This naturally 

fits in the style of the language ML on which their work is based; it fits less in the style of widely used programming 

languages. Kennedy [11] presents an ML extension with a sound treatment of units and dimensions. This also treats 

units and variables as syntactically equal, so expression syntax does not get complicated. However, it does not allow 

for the specifications of derived dimensions such as speed being equal to length divided by time. It also fails to 

provide access to existing libraries without dimension support. 

The Java extension 

Why Java 

Java [12] is a quite new, but already widely used programming language that offers the benefits of object-oriented 

programming with modest complexity. It is as if there is some space left in the language definition for small 

extensions. 
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A Java compiler is relative simple, since it produces byte codes that are on a higher level than the usual machine code. 

Byte codes are collected in so-called class files. These files have an extendible format: specific compilers may include 

additional information of any desired type in class files using class file attributes. This eases implementations of Java 

language extensions. 

A pragmatic reason to take Java was that we had a compiler available that we had developed for Scriptic, a Java 

extension with parallel constructs [13]. 

Dimensions as members of classes and interfaces 

Java programs contain classes and interfaces that are grouped in packages. A class is an aggregate of class members: 

variables and functions; in Java jargon, these are called fields and methods. A class is also a type from which instance 

objects may be created. An interface is also an aggregate of variables and methods, but the variables must be static 

(i.e. shared over all instances) and the methods are all abstract (i.e. the headers are specified only, without statement 

bodies). Moreover, it is not possible to create instance objects directly from interfaces. Classes and interfaces are 

situated in an inheritance hierarchy. 

Introducing dimensions as a new kind of members of classes and interfaces benefits from the inheritance mechanism. 

Moreover, since the compiler translates classes and interfaces into class files, dimensions as new members may be 

compiled into class file attributes. 

Base dimensions and base units 

In our extension, the dimension dimensionName(unitName) construct specifies the base dimensions with 

associate base units. The parentheses are merely syntax to visualize the association. 

Inside an interface named Dimensions in a package named physics, we can have: 

 
dimension Length                     (meter   ); 

dimension Mass                       (kilogram); 

dimension Time                       (second  ); 

dimension ElectricCurrent          (Ampere); 

dimension Temperature             (Kelvin  ); 

dimension AmountOfSubstance (mole    ); 

dimension LuminousIntensity     (Candela); 

Derived dimensions 

The dimension dimensionName = dimensionExpression construct covers the definition of derived dimensions. 

The dimensionExpression has a sequence of other dimension names separated by asterisks and slashes. Rational 

exponents are not allowed there: these would require unnecessary syntactic complexity; moreover, they would allow 

for dimension definitions as combinations of base dimensions with non-integer exponents, without physical meaning. 

The dimensionExpression may also start with "1" and then a slash, to deal with such dimensions as Frequency: 

 

dimension Speed           = Length / Time; 

dimension Acceleration  = Speed  / Time; 

dimension Impulse         = Mass   * Speed; 

dimension Force            = Mass   * Acceleration; 

dimension Frequency     = 1 / Time; 

Numeric types and dimension specifiers 

A numeric type may now be followed by a dimension specifier: an alternating sequence of operators (asterisks or 

slashes) and dimension names. The optional array brackets in the type appear now after the dimension specifier.  

So an application program may declare: 
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double * Time              t; 

double / Time               f; 

float    * Length / Time  v; 

double * Time []            tt; 

double * Time               ttt[]; 
 

Alternatives such as Time * double are prohibited since those would not add much worth while complicating both 

parsing by compilers and inspection by humans. A numeric variable declared without dimension expression is said to 

have an empty dimension. 

Dimension specifiers are not considered to be part of the numeric type; they are independent extra information. 

Method declarations 

Like elsewhere, numeric types in method declarations may also be followed by dimension specifiers, as in: 

 

abstract double*Speed divide (double*Length, double*Time); 

 

The original Java language specification defines: The signature of a method consists of the name of the method and the 

number and types of formal parameters to the method.. This definition does not change; hence a method signature 

does not contain dimension specifiers of the formal parameters. Instead the dimension specifiers constitute a rather 

independent dimension signature for the method. An unchanged rule from the Java language specification is: A class 

may not declare two methods with the same signature, or a compile-time error occurs. So adding another divide 

method with different dimensions would cause a function already defined error: 

 

abstract double*Acceleration divide(double*Speed, double*Time);//error 
 

Instance methods may override others in superclasses and interfaces that have equal method signatures. A notable 

restriction is that the return types are equal. An extra restriction is now that the dimension signatures are equal, as well 

as the dimension specifiers of the return types. 

Java’s original resolution rules for method calls involve the following compile-time steps: 

1. Determine Class or Interface to Search 

2. Determine Method Signature 

2.1 Find Methods that are Applicable and Accessible 

2.2 Choose the Most Specific Method 

3. Is the Chosen Method Appropriate 

Step 2 involves only parameter types, not the return types, and not the dimension specifiers. Step 3 has checks dealing 

with staticness; it also requires that a void method may only be called in a top level expression. In this step, an extra 

requirement is now that the dimensions of the formal and actual parameters match. 

Expressions 

Expressions must be dimensionally consistent. Both sides of assignments, additions and subtractions must have equal 

dimensions. Multiplications and divisions result in appropriate dimensions: 

 

double * Time     t; 

double * Length  s; 

double * Speed   v; 

t = 18.3*second;  // t = 18.3; would be a compile error 

s = 26.4*meter;   // s = 26.4; would be a compile error 

v = t/s; 



 6 

Derived units 

Units that are not defined with the base dimensions may be regarded as normal constant values that are initialized 

using dimensionally sound expressions. The interface physics.Dimensions may have: 

 

final int       * Time         minute = 60 * second; 

final int       * Time         hour    = 60 * minute; 

final int       * Frequency Hertz   = 1 / second; 

final double * Mass        gram    = kilogram / 1000.0; 
 

As a matter of taste one could define well established abbreviations and prefixes for units, as in: 

 

final int               kilo          = 1000; 

final int               mega        = 1000*kilo; 

final double          milli         = 1.0 / 1000; 

final double          micro       = milli / 1000; 

final double          nano        = micro / 1000; 

final int * Length  m            = meter; 

final int * Length  kilometer  = kilo * meter; 

final int * Length  km           = kilometer; 

String conversion 

The Java string concatenation operator ‘+’ automatically converts numbers into strings. These numbers must have 

empty dimension. So the following would be illegal: 

 

double * Time   t = 18.3*second; 

double * Length s = 64.2*meter; 

System.out.println (“speed: “ + (s/t)); // compile error 
 

We first need to “divide off” the dimension present in the expression s/t. This can be done by dividing it by a unit of 

equal dimension, for instance kilometer/hour; the result then represents the number of kilometers per hour: 

 

System.out.println (“speed: “+ ((s/t) / (1.0*kilometer/hour)) + “ km/h”); 
 

Allowing for “speed: “+(s/t)+“ km/h” would have been error prone; the programmer could wrongly assume that a 

number of kilometers per hour would appear in the string, instead of a number of meters per second. 

In dividing off the dimension the programmer explicitly states the unit that holds for the number being appended to the 

string. 

Generic dimension specifiers 

To compute a sum of speeds, we could write: 

 

double*Speed summarize(double*Speed speeds[]) { 

    double*Speed result=0*meter/second; 

    for (int i=0; i<speeds.length; i++) result += speeds[i]; 

    return result; 

} 
 

This would work, but we do not want to write such a method for each kind of physical dimension for which we may 

have to compute sums. Besides, this could easily lead to method already declared errors. 
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We want to specify just one generic summarize method, applicable for all those dimensions; summarize accepts an 

array of dimensioned double numbers and returns a double scalar value of the same dimension. This is solved by some 

extra syntax for parameter declarations and return type declarations: 

• double*dimension p - parameter p is a number of any dimension with double precision 

• dimension(valueExpression) - the dimension of valueExpression. The expression must be numeric or a 

numeric array type. If this construct is used for a formal parameter in a method header, then the expression 

may refer to other parameters appearing more to the left. When used for a return type or a local variable, 

references to any parameter are allowed. 

So we can write a more general summarize method: 

 

double*dimension(v[]) summarize (double*dimension v[]) { 

    double*dimension(v[]) result=0; 

    for (int i=0; i<v.length; i++) result += v[i]; 

    return result;  

} 
 

The variable result has a non-empty dimension; it is initialized with 0. This is allowed since 0 now by definition 

compatible with any dimensioned number: the zero is polymorphic. 

Dimension casting 

Occasionally we may want to use existing library mehtods that are not aware of dimensions. Suppose this is a library 

method to use: 

 

double [][] multiply (double[][] a1, double[][] a2) 
 

This calls for the ability to cast expressions to different dimensions, also applicable to arrays. The syntax is:  

(dimension dimensionExpression) valueExpression 
 

Examples: 

 

(dimension Speed) 1 

(dimension dimension(1)) anArray 
 

The latter example also applies the construct dimension(valueExpression) in the dimensionExpression. A 

shorthand syntax for such combined use is: 

 

(dimension (valueExpression)) valueExpression 
 

This yields: 

 

(dimension (1)) anArray 
 

The shorthand syntax saves an occurrence of the word dimension. The pair of parentheses around the 

valueExpression could be made optional, but that would come at the cost of merging the name spaces for variables 

and dimensions. 

Now we can build a wrapper method for multiply. It has the same methodsignature and a generic dimension signature. 

The method body casts the parameters in the call to multiply into an empty dimension; the return value is casted back 

to the product dimension of the parameters: 
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double*dimension(a1[0][0]*a2[0][0]) 

multiplyD (double*dimension[][] a1, double*dimension[][] a2) { 

  return (dimension(a1[0][0]*a2[0][0])) multiply((dimension(1))a1,(dimension(1))a2); 

} 
 

Dimension casting may lead to misuse. To avoid the need of casting, new library methods should have generic 

dimension specifiers, like: 

 

double*dimension(v[]) summarize (double*dimension v[]) 

Temperatures 

The extension does not provide specific support for false origins, such as with degrees Celsius and degrees Fahrenheit 

when used for absolute temperatures. Extra classes may handle false origins, e.g. a class Temperature in the package 

physics: 

 

package physics; 

 

public class Temperature implements Dimensions { 

 

 public static double*Temperature zeroDegreesCelsius = 273.15*Kelvin; 

 

 public static double toAbsoluteDegreesCelsius (double*Temperature t){ 

      return t-zeroDegreesCelsius; 

 } 

 public static double*Temperature fromAbsoluteDegreesCelsius(double t){ 

    return t + zeroDegreesCelsius; 

 } 

   ... likewise for Fahrenheit ... 

} 

There is no conflict between the class named Temperature and the dimension named Temperature, since different 

name spaces are involved. 

Square root 

The current approach leaves no way to specify a generic square root method. Using an extended syntax one could 

write with rational exponents: 
 

double*dimension(v)^(1/2) sqrt (double*dimension v);  
 

Then this method could accept any argument having a dimension that is actually a square of another dimension. 

However, the cost of additional syntactic complexity may not justify the feature of rational exponents. An alternative 

approach would allow for: 

 

double*dimension sqrt (double*dimension(return*return) v);  
 

Here return in the expression of the dimension(valueExpression) construct would refer to the dimension of the 

method return value. For the time being support for this feature will not be implemented, until it proves to be needed 

in practice. 
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Implementation 

Dimension descriptors 

The implementation of the dimensions system in Java is largely based on dimension descriptors, i.e. strings that 

describe the dimensions of variables, expressions, method parameters and method return types. Dimension descriptors 

have been inspired on field descriptors and method descriptors that occur in Java class files to describe types of 

variables, parameters and return values. E.g., the descriptor for 

 

Object m(int i, double[] j, java.util.Hashtable) 
 

is: 

 

(I[DLjava/util/Hashtable;)Ljava/lang/Object; 
 

A dimension descriptor for an acceleration in terms of base dimensions in the interface physics.Dimensions is: 

 

  2D1physics/Dimensions.Length;D-2physics/Dimensions.Time; 
 

• the leading "2" says the dimension is composed of two base dimensions 

• the D's introduce qualified dimension names together with associated powers; the names are ordered 

alphabetically for sake of easy processing 

• the semicolons delimit the names. 

The dimension descriptor of a method is, roughly speaking, a concatenation of the dimension descriptors of its 

parameters and the return value, as far as these are of numeric type; “0” is taken instead of an empty string for a 

dimensionless numeric parameter. A parameter with a free dimension gets as dimension descriptor: "Vn;" with n a 

sequence number, e.g., "V2;". A reference to a power of the dimension of such a parameter is be "WpowerV n;". For 

example, the two methods 
 

double*report (int i, double*Speed speeds[]); 

double*dimension(a1[0][0]*a2[0][0]) 

      multiplyD (double*dimension[][] a1, double*dimension[][] a2); 
 

have dimension descriptors: 

 

0;2D1physics/Dimensions.Length;D-1physics/Dimensions.Time;0 

V1;V2;2W1V1;W1V2; 

Class file attributes 

The implementation requires two new kinds of attributes in class files: 

• Dimensions – this attribute is optional for the class or interface. It contains a table with dimensions that have been 

locally defined. Each entry contains a bit set for the access modifiers (private, public or protected), the name of 

the dimension, and a string. If the latter string starts with a digit, it denotes a dimension descriptor and the 

dimension is a compound dimension. Otherwise the dimension is a base dimension and the string is the name of 

the corresponding unit. 

• Dimension – this attribute is optional for each member variable and method. It gives the dimension descriptor. 

Compilation and execution 

The compiler translates base units into integer constants with value 1. It also processes the new types of class file 

attributes, so that it is aware of dimensions and dimension signatures in earlier compiled classes and interfaces. The 

compiler signals dimensional errors verbosely, e.g. when an acceleration is passed as parameter to a method that 

expects a speed: 
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Incompatible dimension: physics.Dimensions.Length*physics.Dimensions.Time^-2 

formal: physics.Dimensions.Length*physics.Dimensions.Time^-1 
 

The Java virtual machine does not need to know about the dimensions. Programs run without performance penalty, 

except possibly for some more multiplications with units that are not translated into constants with value 1. A 

debugger that is not aware of the dimensions system shows dimensioned numbers relative to the units of the base 

dimensions. 

Effort 

Using the convenient definition of dimension signatures, the implementation in our existing Java compiler was 

relatively straightforward and easy: it took about 8 working days, resulting in approximately 2000 lines of code. 275 

of these lines are in the parser, or 8% of the total parsing code. Another 275 lines implement essential utility functions, 

e.g. to compute the product of 2 dimension descriptors  (more precisely: the dimension descriptor corresponding to the 

product of 2 dimensions that are given by their descriptors). 

Conclusion 

We have presented a simple extension to Java that can prevent typical types of errors involving dimensions and units 

of measurement. Errors remain possible in areas of input and output, such as string conversion, access to external 

libraries, interprocess communication and database access. This seems to be inevitable for any language extension 

supporting dimensions. Proper use of dimension casting and dividing-off units may minimize error-proneness.  

The extension has been easy to implement in an existing Java compiler. There does not seem to be a fundamental 

objection to extend other languages such as C++ likewise. 
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