
Appears in Proceedings of Scala ’13, Montpellier, France, 2013. Author’s version, don’t redistribute

Dataflow Constructs for a Language Extension Based on
the Algebra of Communicating Processes

André van Delft
andre dot vandelft at gmail dot com

ABSTRACT
The dataflow programming paradigm addresses how data flows in-
side programs. Program components, that are often concurrently
active, send data to one another; this eases software composition.
Mainstream programming languages do not support the paradigm
well because of their deterministic and sequential nature.
A language that focuses on concurrency is better suited to incorpo-
rate concepts from the dataflow paradigm. SubScript is an exten-
sion to the Scala programming language with constructs from the
Algebra of Communicating Processes, targeted at event-driven and
concurrent programming. Like ACP, SubScript focuses on program
behavior; support for data was through local variables and parame-
ters. However, the ACP background enabled SubScript to deal with
the challenges of the dataflow paradigm. This is achieved through
several new features.
1. A process may have a result value, like a method
2. A process result value may be passed on to another process that
starts subsequently. This helps getting rid of variables, e.g., in GUI
controller specifications.
3. Output actions from a process may be piped to a parallel process,
yielding a similar expressiveness as pipes in Unix command shell
language.
4. Actors written in Scala often need to keep track of a state, and
their program text poorly expresses the conceptual control flow.
When such actors are written in SubScript, incoming data may be
treated as events that may appear anywhere in the specification, just
like in SubScript GUI specifications.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Dataflow languages

General Terms
Languages, Theory

Keywords
Algebra of Communicating Processes, dataflow, concurrency, non-
determinism, GUI programming, actors

1. INTRODUCTION
Dataflow programming is a programming paradigm that models

a program as a directed graph of the data flowing between opera-

Copyright is held by the author/owner.
Scala ’13, Montpellier, France
ACM 978-1-4503-2064-1.

tions1. Program components that are often concurrently active send
data to one another. This is done in Unix shell languages: small
single-purpose tools are easily glued together using the pipeline
symbol: |. This ease of use has made Unix command shell pipes
attractive and popular. Pipes were possible thanks to the concur-
rency support by Unix. This is largely lacking in mainstream pro-
gramming languages, which are deterministic and sequential.
A programming language that is focused on concurrency is better
equipped to support the dataflow paradigm. SubScript [van Delft()]
is an extension to Scala [Odersky et al.(2008)Odersky, Spoon, and
Venners]2 with constructs from the Algebra of Communicating Pro-
cesses (ACP) [Baeten(2005)]. It is similar to grammar specification
languages such as YACC [Johnson(1979)]; a main difference is that
SubScript also has elementary support for concurrency. It is simple
to glue processes to one another, but dataflow constructs were lack-
ing. The formalism focuses on program behavior, yielding concise
specifications. Support for data was initially through local vari-
ables and parameters for process refinements. There much of the
conciseness could be lost.
This paper offers four new kinds of dataflow support in SubScript:
1. A process refinement may have a result value, like a method.
2. One-time flow between processes is supported by allowing for
result values flowing to subsequent processes. This is depicted by
a long arrow: ==>.
3. Multiple-time flow is supported by communication through pipes;
internally the processes repeatedly perform write and read actions
over these pipes. Pipes are depicted as parallel operators followed
by a long arrow, such as &==>.
4. An actor [Carl Hewitt(1973)] framework such as Akka3 has sup-
port for actor topologies that are much more general than pipes.
Actors may be distributed over a network. Callback methods for
incoming messages describe Akka actor behavior; this makes con-
trol flow hard to understand. Using SubScript the behavior may be
described as a process without the need for callbacks. Actors in
plain Scala use partial functions to specify the expected messages;
in SubScript a similar ”partial script” is applied.
The applied arrow symbols give a visual indication of dataflow. As
in mathematics, notation is not just a detail; it matters for clarity.
The next chapters discuss ACP, SubScript and its implementation.
Thereafter use cases of text parsers, GUI controllers, pipes and ac-
tors in SubScript code show the new data flow support.

1Formulation taken from Wikipedia on ”Dataflow programming”
2In principle the extension may apply also to other languages such
as C, C#, Java and JavaScript
3See http://doc.akka.io/docs/akka/snapshot/scala/actors.html

2. THE ALGEBRA OF COMMUNICATING
PROCESSES

The Algebra of Communicating Processes (ACP)[Baeten(2005)]
is an algebraic approach to reasoning about concurrent systems.
It is a member of the family of mathematical theories of concur-
rency known as process algebras or process calculi4. More so than
the other seminal process calculi (CCS [Milner(1982)] and CSP
[Hoare(1985)]), the development of ACP focused on the algebra of
processes, and sought to create an abstract, generalized axiomatic
system for processes.
ACP uses instantaneous, atomic actions (a,b,c,...) as its main prim-
itives. Two special primitives are the deadlock process δ and the
empty process ε. Expressions of primitives and operators represent
processes. The main operators can be roughly categorized as pro-
viding a basic process algebra, concurrency, and communication:

• Choice and sequencing - the most fundamental of algebraic
operators are the alternative operator (+), which provides
a choice between actions, and the sequencing operator (·),
which specifies an ordering on actions. So, for example, the
process (a + b) · c first chooses to perform either a or b,
and then performs action c. How the choice between a and
b is made does not matter and is left unspecified. Note that
alternative composition is commutative but sequential com-
position is not (because time flows forward).

• Concurrency - to allow the description of concurrency, ACP
provides the merge operator ‖. This represents the paral-
lel composition of two processes, the individual actions of
which are interleaved. As an example, the process (a · b) ‖
(c · d) may perform the actions a, b, c, d in any of the se-
quences abcd, acbd, acdb, cabd, cadb, cdab.

• Communication - pairs of atomic actions may be defined as
communicating actions, implying they can not be performed
on their own, but only together, when active in two parallel
processes. This way, the two processes synchronize, and they
may exchange data.

ACP fundamentally adopts an axiomatic, algebraic approach to
the formal definition of its various operators. Using the alternative
and sequential composition operators, ACP defines a basic process
algebra which satisfies the following axioms:

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ x = x

(x+ y) · z = x · z + y · z
(x · y) · z = x · (y · z)

The primitives δ and ε behave much like the 0 and 1 that are
usually neutral elements for addition and multiplication in algebra:

δ + x = x

δ · x = δ

ε · x = x

x · ε = x

There is no axiom for x · δ. x + ε means: optionally x. This is
illustrated by rewriting (x+ ε) · y using the given axioms:

(x+ ε) · y = x · y + ε · y
= x · y + y

4This description of ACP has largely been taken from Wikipedia

The parallel merge operator ‖ is defined in terms of the alter-
native and sequential composition operators. This definition also
requires two auxiliary operators:

x ‖ y = xTy + yTx+ x|y

• xTy - ”left-merge”: x starts with an action, and then the rest
of x is done in parallel with y.

• x|y - ”communication merge”: x and y start with a commu-
nication (as a pair of atomic actions), and then the rest of x
is done in parallel with the rest of y.

The definitions of many new operators such as the left merge oper-
ator use a special property of closed process expressions with · and
+: with the axioms as term rewrite rules from left to right (except
for the commutativity axiom for +), each such expression reduces
into one of the following normal forms: (x + y), a · x, ε, δ. E.g.
the axioms for the left merge operator are:

(x+ y)Tz = xTz + yTz
a · xTy = a · (xTy)

εTx = δ

δTx = δ

Again these axioms may be applied as term rewrite rules so that
each closed expression with the parallel merge operator ‖ reduces
to one of the four normal forms. This way it has been possible to
extend ACP with many new operators that are defined precisely in
terms of sequence and choice, e.g. interrupt and disrupt operators,
process launching, and notions of time and priorities.
Since its inception in 1982, ACP has successfully been applied to
the specification and verification of among others, communication
protocols, traffic systems and manufacturing plants.
In 1989, Henk Goeman unified Lambda Calculus with process ex-
pressions [Goeman(1990)]. Shortly thereafter, Robin Milner et
al developed Pi-calculus [Milner et al.(1989)Milner, Parrow, and
Walker], which also combines the two theories.

3. SUBSCRIPT
SubScript mainly offers a new construct named ”script”. This is

a counterpart of ACP process refinements, that coexists with vari-
ables and methods in classes. The body of a script is an expression
like the ACP process expressions.

Esthetically, ACP processes are preferably notated with the math-
ematical expression syntax. However, ACP symbols ·, ‖, δ, ε are
hard to type; for a programming language ASCII based alternatives
are preferred. SubScript therefore applies a semicolon (;) and am-
persand (&) for sequential and parallel composition.

As with multiplication in math, the symbol for sequence may
also be omitted, but then some white space should separate the
operands. As usual, the semicolon should have low precedence,
and the white space operator should have high precedence. This
way one can get rid of parentheses. Instead of (a;b)+c; d and
(a b + c) d one could write a b + c; d.

Scripts interoperate with genuine Scala code:

• Scala code may call scripts as if these were a special kind
of methods. An extra parameter would apply for such calls:
the process executor, which may be tailored for the type of
application. After the call from the native code ends, the
executor may provide information on the execution, e.g. on
whether the script ended successfully or as deadlock (δ).

• Any fragment of Scala code placed between clear markers
such as braces may serve as an operand in a process expres-
sion. The start and end of such fragments will correspond
with atomic actions in ACP. This way the code fragments
may overlap, which is useful when they are run in separate
threads, or when they denote actions that take some simula-
tion time in a discrete event simulation context.

Scripts are usually defined together in a section, e.g.,

script..
hello = print("Hello,")
test = hello & print("world!")

def testBridge = subscript.DSL._execute(test)

From here on the header script.. is mostly omitted for brevity.
The DSL method execute this calls the Scala method generated
for the script test with a fresh CommonExecutor as a parameter;
this is the default executor type. Other types of executors could be
more suited for specific application domains, such as discrete event
simulations and multicore parallelism.
Between hello and print("world!") is a parallel operator.
Each operand essentially contains a simple code fragment rather
than code to be run in a separate thread. Therefore one operand will
be executed before the other; the result is either ”Hello,world!” or
”world!Hello,”. The order is up to the executor; the CommonEx-
ecutor will deterministically apply a left-to-right preference.
In general the atomic actions in concurrent processes are shuffle
merged, like one can shuffle card decks.
A SubScript implementation will translate each script into a method.
This way most Scala language features for methods also apply to
scripts: scripts may have type parameters and data parameters; each
parameter may be named or implicit. Variable length parameters
and even script currying are possible.

3.1 Script parameters
Next to value parameters, scripts may have output parameters.

These are prefixed by a question mark in both the declaration header
and in the actual call. E.g., with a declaration
receive(?c:Char) a call would look like receive(?d).
A double question mark in the declaration marks a constrained pa-
rameter, e.g., key(??c:Char). Then at the actual call four kinds
of parameters may be provided:

• key(?d) - any character
• key(’x’) - the character ’x’
• key(?d ?if(.isUpper)) - any uppercase character
• key(??d) - d is also a constrained parameter of the script

that contains this call, and the parameter kind at the actual
outer call applies as well to the inner call.

A slot for an actual output parameter is often taken by a local
variable, as in var d:Char key(?d). Alternatively param-
eter lists do not need parentheses; a starting comma is enough:
var d:Char key,?d. This leads to a useful shorthand nota-
tion key,?d:Char. When the script key is declared as implicit,
the actual call may even be ?d:Char.

3.2 Execution modes
SubScript supports various execution modes for code fragments.

E.g., script expressions may contain mixes of input actions and out-
put actions. Input actions would correspond to code fragments ex-
ecuted by event listeners. Output actions run by default in the main

thread, but they may be forced to run in the GUI thread, a database
thread or in its own thread. Script expressions may be annotated,
allowing for a flexible set of execution modes supported by an im-
ported library and the actual executor. E.g., @processor=2:
{*someCode*} could specify that code fragment is scheduled for
processor 2. Likewise a code fragment may be associated with a
specific start time or duration; time may then be either real time or
a simulation time.

3.3 Logic extensions to ACP
As ACP is a kind of extension of Boolean Algebra, processes

have logic properties: they may fail (ending in δ) or succeed (end-
ing with ε or with an atomic action). This suggests more kinds of
parallelism are possible. In ACP parallelism all operands should
succeed for the operator to succeed; in SubScript this is called and-
parallelism. Likewise or-parallelism requires only one operand to
succeed. For both kinds there are ”strong” flavors:

• in strong and-parallelism, when one operand fails all others
are forced to stop
• in strong or-parallelism, when one operand ends successfully

all others are forced to stop

This has an analogy with boolean operators in C-like language: &&
and || do not evaluate the second operand if the evaluation of the
first one is decisive. Therefore familiar symbols &, |, && and ||
depict these four flavors of parallelism in SubScript. Other logic
operators are for instance process negation (inverting the logic re-
sult of a process) and failure continuation (a sequence that contin-
ues to the right as long as operands fail).

3.4 Communication
Traditional ACP process communication is binary (it involves 2

communicating parties), and it yields an atomic action. These re-
strictions may be lifted: communication may be n-ary, and yield
any process expression. A special case is then unary communica-
tion, which is an other way to describe process refinement. Multi-
party communication may likewise be viewed as ”multi-calls”: mul-
tiple callers (e.g. a send action and a receive action) perform to-
gether a single shared process.
Other forms of communication are now available at little cost:
An asynchronous send action is simply a process launch of a nor-
mal send action. Some syntactic sugar eases the specification of
communication over channels, as in:

c<-->(?i: Int) = {}
test = c<-3 & c->?j: Int

Names of process refinements may for this purpose end in an arrow
<- and ->. The part of the name before the arrow may be empty.
Thicker arrows <= and => offer similar kind of channel communi-
cation that is subjected to a network topology, as laid out later in
this paper.

3.5 Deterministic control and Iteration
SubScript has if-else and switch constructs as could be

expected. Five operand types support iterations and breaking:
while marks a loop and a conditional mandatory break
... marks a loop; no break point, at least not here
.. marks a loop, and at the same time an optional break
. an optional break point

break a mandatory break point
Note that these are operands; they often belong to a sequential

operator, but the iterators may as well relate to another n-ary oper-
ator such as a parallel one.

4. CALL GRAPH SEMANTICS
A SubScript program is executed by a common or specific ex-

ecutor. The semantics therefore depends on the applied executor.
A common should preferably be a reference for other kinds of ex-
ecutors. However, no exact specification for a common executor
is available at the time of writing this article. Yet we can present
informally how it should operate.

Figure 1: Template Tree

The static structure of processes
may be represented by so-called
”Template trees”. For instance,
consider the following process
prints optionally ”Hello”, and
then ”world!”:

Main = . print("Hello ");
print("world!")

A process being called from the
base language implies that its
template tree is handed to a pro-
cess executor. The latter starts
building a so called call graph,
an acyclic graph with a single
root node. Below this root node there is a ”process call node”, with
in turn parents a ”callee node” for the executed process. Under that,
other nodes will be added and removed according to the template
tree as the program evolves; these nodes represent the process ex-
pression constructs, such as n-ary operators and code fragments.
This is done by handling simple messages of various kinds.
Call graph management precedes over executing code for atomic
actions. Graph operations below a unary or n-ary operator pre-
cede over the operation at such an operator. This is achieved
by collecting messages arriving at such operators in so called
Continuation messages. This way the response by at the n-
ary operator can take into account all messages that have arrived.
Some message types in descending priority order:

• AAActivated, AAStarted, AAEnded - an atomic ac-
tion has been activated, started or ended
• Break - a break or optional break has been encountered
• Success - a success has been encountered
• Exclude, Suspend, Resume - atomic actions in de-

scendants must be excluded, suspended or resumed
• Activation - a node is added to the call graph, according

to the template tree. This may also involve executing native
code for annotations, process parameter evaluation, if- and
while conditions, etc. Moreover, one or more messages may
be inserted in the message queue.
• Deactivation - a node is removed from the graph
• Continuation - Collected messages for an operator node
• AAExecutionFinished - a code executor reports that

the code related to an atomic action has finished
• AAToBeExecuted - Atomic Action to be executed in the

main thread

Messages Exclude, Resume and Suspend are propagated
downwards in the call graph. Messages AAStarted, AAEnded,
CAActivated, AAActivated, Break and Success are prop-
agated upwards in the graph; the latter two stop at n-ary opera-
tor nodes. They may cause something to happen; e.g., when an
AAStarted message arrives a child node at + and ;, Exclude
messages for the siblings are inserted.

Many language constructs behave quite straightforward. E.g.,
upon activation, the deadlock process (symbolized by (-)) inserts

Figure 2: Call Graphs

a Deactivation message. The empty process (symbolized by
code(+)) inserts a Success and a Deactivationmessage. The
neutral process determines whether its n-ary operator ancestor is
and-like: in that case it acts as (+), else as (-). When an itera-
tor is activated (.. ... while) it first sets an iteration flag
at its n-ary ancestor node, if any. Then it may execute some test
(while), insert a Break message; from then the iterator acts as
the neutral process (which has symbol (+-)).
Figure 2 shows the evolution of the call graph. Nodes 1 and 2 are
the root and an anchor for the executed process, node 3. This ac-
tivates node 4: the outer sequential operator. Activating any n-ary
operator activates its leftmost operand, and inserts a Continuation
message. Thus nodes 5 and 6 are activated (see A).
The latter inserts Break, Success and Deactivate messages.
These three arrive at sequential node 5, where they are added to
the Continuation; the Deactivation also removes node 6.
The Continuation at node 5 activates the next operand (node
7, Hello), because of the Success. It also sends an Success
onward to node 4, because of the optional Break. There it is
added to the Continuation. Handling the Success-holding
Continuation at node 4 activates the next operand (node 8,
World). During the activation of nodes 7 and 8, AAActivated
and AAToBeExecuted messages are inserted (see B).
Now the AAToBeExecuted for node 7 is handled; it precedes
over the one for node 8 because it had been inserted earlier. The
code executor for node 7 executes the code and inserts AAStarted,
AAEnded, Success and Deactivation messages. The mes-
sage AAStarted has no effect at node 5. There another AAStarted
is inserted propagating to node 4. Handling this one causes an
Exclude message for node 8 to be inserted. Handling that mes-
sage inserts a deactivation for node 8 (see C).
Then another Success-holding Continuation at node 5 is
handled; this leads to such a Continuation at node 4, which
activates the node 9, again for World (see D). After that has been
executed, all nodes are deactivated and the process execution ends.
An Unsure code fragment would be executed first; if it succeeds,
messages are inserted like for a normal code fragment. If it fails,
a Deactivation is inserted. If it got an undetermined state then a
AAToBeReexecuted would be inserted.
For a code fragment that runs in its own thread or in the GUI
thread, an AAStarted message is inserted, and thereafter the

code fragment is executed asynchronously; at the end thereof an
AAExecutionFinished message is inserted. This is picked
up in the message handling loop, and then, normally, AAEnded,
Success and Deactivation messages are inserted.
An event handling code executor works in general asynchronously.
Upon an event notification it executes the code, and then inserts an
AAExecutionFinished message. Handling the latter inserts
an AAStarted message and the three others.
Note that handling an AAExecutionFinished may result in
only a Deactivationmessage, when the atomic action had been
excluded meanwhile, e.g. because of another atomic action in an-
other branch of an disrupt operator.

5. IMPLEMENTATION
At first SubScript had been implemented as a domain specific

language (DSL); the so called SubScript Virtual Machine executes
scripts by internally doing graph manipulation. The VM has been
programmed using 2000 lines of Scala code. This is not a complete
implementation; most notably support for ACP style communica-
tion is still to be done. When complete the VM may contain about
4000 lines.
In principle the DSL suffices for writing the essence of SubScript
programs. However with the special syntax, e.g. for parameter
lists, n-ary infix operators, various flavors of code fragments, spec-
ifications become considerably smaller and these require much less
parentheses and braces (which is also important for clarity).
A special branch of the Scala compiler was modified so that it trans-
lates the genuine SubScript syntax to the DSL. This took about
2000 lines of Scala code, mainly in the scanner, the parser and the
typer.

5.1 Compilation
The already presented script

Main = . print("Hello "); print("world!")

is translated during compilation into the following DSL code:

def Main = _script(’Main) {
_seq(
_seq(_optionalBreak,
_normal{(here:N_code_normal)=>print("Hello ")}),
_normal{ (here:N_code_normal)=>print("world!")})

}

5.2 VM
The DSL execute method invokes a method named run in

the SubScript VM. A bit simplified version is like:

def run = {initializeWork; while (workToDo){}}
def initializeWork = activateFrom(anchorNode,

anchorNode.t_callee)
def workToDo(): Boolean = {
if (callGraphMessageCount > 0)
handle(dequeueCallGraphMessage)

else if (!rootNode.children.isEmpty) {
synchronized {
if (callGraphMessageCount==0)
synchronized {
wait() // for an event to happen

} } }
else return false
return true

}

The SubScript VM may have to collaborate with frameworks that
do a main loop by themselves. Then in principle two solutions are
possible:

• SubScript’s run method is called in a special thread, and this
runs in synchronization with the framework’s main loop
• SubScript’s run method is not called; instead the initialize-

Work is called and thereafter the framework loop calls regu-
larly the workToDo method

Thread synchronization is scarcely needed in the source code;
synchronized code is mainly needed for accessing the message queue.
GUI example applications run responsively. The interaction with
the underlying GUI library does not involve polling; there is no
CPU time spent when waiting for input. The interaction is pretty
much the same as a plain Java or Scala would have. A difference is
that a widget listener is registered and unregistered each time asso-
ciated actions such as click are activated and deactivated.
To give an indication of the speed: an implementation of a Java
based predecessor language is in production use at an engineer-
ing agency for parsing text documents. On a 3GHz Linux PC the
throughput per second is 30,000 accepted tokens out of 120,000 ex-
pected ones (i.e. the average accepted token had been one among
4 alternatives). This speed suffices in many practical cases: on that
platform the overhead is less than 0.1 milliseconds per action; for
GUI controllers no slowdown will be noticeable.

6. BEYOND ACP STYLE EXPRESSIONS
SubScript as defined so far is higher level language than Scala,

since it allows to express nondeterministic choice and concurrency
more concisely. On the other hand, SubScript is very terse in its
support for nondeterministic choice and concurrency. It is still
hampered in two ways: For the second issue a solution is briefly
outlined here.
In Scala one can program a ”While” method using anonymous
functions; other control structures are equally possible, e.g. for
locking. Something similar should be possible using script lambda’s
(AKA anonymous scripts, analogous to anonymous functions), but
preferably with much less parentheses and braces. Suppose script
lambda’s are written as < expr >.
A little bit of syntactic sugar using the tilde symbol (∼) enables
programming scripts calls with the script name divided into parts
around the parameters. Each name part may or may not be empty.
E.g., a progress monitor that during 5 seconds regularly updates a
status would be in terse SubScript:

progressMonitor = sleep_ms(250) updateStatus ...
|| sleep_ms(5000)

With a lambda and the syntactic sugar this could be written as

progressMonitor = during_ms̃ 5000
ẽvery_ms̃ 250
d̃õ < updateStatus > ẽnd

using a script with split names (that may come from a library):

during_ms̃ duration:Int
ẽvery_ms̃ interval:Int
d̃õ s:script ẽnd = sleep_ms(interval) s ...

|| sleep_ms(duration)

The rest of this section focuses on solutions for the first issue: sup-
port for data.

6.1 Use Case: Text Parsing
SubScript allows for concise grammar specifications, but getting

data out of it involved relatively much coding. E.g., these scripts
describe the syntax of numeric expressions such as 1+2*(3+4):

expr = term .. "+"
term = factor .. "*"
factor = number + "(" expr ")"

A string such as "+" and "*" is here a parameter for an implicit
script parseString. The low level scripts parseString and
number may be programmed using annotations that registers ex-
pectations at a lexical scanner, followed by a code fragment that
succeeds when such expectation is met:

implicit parseString(s:String)
= @expStr(s): {?accept?}

number = @expNum : {?accept?}

The specification of expr, term and factor above only checks
for grammatical correctness; it does not produce a result. Compare
for instance a YACC specification for the same input, that also pro-
duces a numeric result:

expr : expr PLUS term { $$ = $1 + $3; }
| term { $$ = $1; } ;

term : term MUL factor { $$ = $1 * $3; }
| factor { $$ = $1; } ;

factor : LPAR expr RPAR { $$ = $2; }
| NUMBER { $$ = $1; };

A SubScript specification with the same functionality would re-
quire that after successful termination of the calls to term, and fac-
tor an addition or multiplication is performed. These calls need for
that purpose to listen to such an event. This could be done using
a split-name script do˜s:script˜whenDone˜f:Unit˜end;
in this context a name without letters may be preferable due to its
conciseness: ˜s:script˜˜f:Unit˜. The script registers a lis-
tener using an annotation:

˜s:script̃ f̃:Unit̃ :Int
= @onDeactivate_success{f}: s

expr(?r:Int) = {!r=0!}; var t:Int
˜< term(?t) >˜˜r+=t˜ .. "+"

term(?r:Int) = {!r=1!}; var t:Int
˜<factor(?t)>˜˜r*=t˜ .. "*"

{!r=0!} initializes the result value of script expr. The braces
with exclamation marks state that this code fragment is ”tiny”, i.e.
immediately to be executed upon activation, and it does not corre-
spond to conceptual atomic actions. The semicolon following the
initializer ensures that the initializer is not part of the loop created
by the two periods to the right.

The factor script does an implicit call to an implicit parame-
terized num script:

factor(?n:Int) = ?n + "(" expr,?n ")"
implicit num(??n:Int) = @expNum(_n):{?accept?}

The num script has two question marks prefixing its parameter, so
that an actual call may supply an output parameter, but also a spe-
cific ”matching” value. The expNum method will take care of that;
it needs to access more information on the parameter (e.g. is it
called as an output parameter or with a forcing value). This in-
formation is available in n, i.e. a holder for the official formal

parameter n, marked by an underscore prefix:
In the specification above variable declarations distract quite strongly
from the described expression syntax. This may improve using the
new script result value feature.

˜s:script[Int]˜ f̃:Int=>Int̃ : Int
= @onDeactivate_success{$ = f($s)}: s

expr: Int = {!0!}ˆ; ˜< term >˜˜ $ + _ ˜ˆ .. "+"
term: Int = {!1!}ˆ; ˜<factor>˜˜ $ * _ ˜ˆ .. "*"

factor: Int = ?$ + "(" expr̂ ")"

• a script call and a code fragment may get a caret (ˆ) suffix:
this means that the script result value is set to the result value
of the call or code fragment.
• in a value expression the pseudo-variable $ stands for the

result of the currently defined script.
• $name stands for the last yielded result value of a called

script with the given name.

6.2 Use Case: A GUI Controller
GUI controllers may require a sequential composition5 where the

the left hand operand has a result which is a default parameter input
for the right hand operand:

˜[T,U]s:script[T]˜ t̃:T=>script[U]˜: U = s; t($s)ˆ

A short hand notation for ˜<aˆ>˜˜<bˆ>˜ is a==>b

6.2.1 Example: Mouse Clicks and Key Input
Suppose click:Point and key:Char are scripts for mouse

click events and key events. These could be operated as follows:

clickHandler = click ==> handleClick(_); ...
keyHandler = key ==> handleKey(_); ...

Note that the semicolons are needed; without these only the right
hand side of the arrows would iterate, without the calls to click
and key.

6.2.2 Example: Exiting
GUI Controllers programmed in SubScript often have an exit

script that is placed in an or-parallel composition to the main pro-
gram flow. This way the controller ends its operation as soon as the
exit script is ready; the exit script is a sequential loop of each time
an exit command followed by a confirmation dialog; the loop ends
upon true confirmation:

doExit = var sure=false
exitCommand
@gui:{sure=areYouSure}
while(!sure)

\vspace{-3pt}

@gui: means that the subsequent piece of code must be done
in the GUI thread using SwingUtilities.invokeLater().
The variable sure is declared separately; this way it dominates a
large part of the script. Using the result flow arrow this becomes:

doExit = exitCommand; @gui:areYouSure ==> while(!_)

5In fact a special sequence operator would be needed that would
shine through for iteration operands. The semicolon is shown here
instead, to limit the introduced syntax.

6.3 Use Case: Pipes
SubScript supports pipe communication though variations of par-

allel operators:

• &==> - normal parallelism with dataflow from left to right
• ||==> - likewise, for strong or-parallelism

Processes that take part in such pipe constructs read and write
using special communication actions. These are send and receive
scripts of which the names end in an arrow: <= for send and => for
receive. The alphanumeric part of the name may be empty so that
only an arrow remains.

6.3.1 Example: Copying a file
As an example, consider a dataflow program for copying a file. It

mainly contains two processes, a reader and a writer, and connects
these through a network operator:

copier(in: File,
out: File) = reader(in) &==> writer(out)

The reader process is quite simple. It opens a file; then reads bytes
from the file and outputs these over the network; when end of file
is reached the loop ends and the file is closed. Note that it also
transmits the end-of-file (-1) value over the network.

reader(f: File)
= val inStream = new FileInputStream(f);
val b = inStream.read() <=b while (b!=-1);
inStream.close()

The writer is similar: it opens a file; then reads data from the net-
work and, as long as end-of-file is not encountered, it writes these
to the output file

writer(f: File)
= val outStream = new FileOutputStream(f);
=>?b:Int while (b!=-1) outStream.write(b);
outStream.close()

Here the while construct is the middle in a sequence of 3 operands;
this specifies that the sequence is a loop which ends at the while, as
soon as its condition evaluates to false. The communication chan-
nel for the data also needs to be declared:

<==>(b: Int) = {}

This implicitly declares two scripts, <=(b: Int) and =>(??b:
Int), which share a body; this body may happen when a send call
is active in a left hand side operand a pipe operator, and a receive
call is active in the right hand side. The double question mark indi-
cates that the receiver call has an output parameter for which also a
fixed value may be specified.

6.3.2 Pros and Cons of Pipelines
Compare dataflow style with traditional style for the copy method:

def copy(in: File, out: File): Unit = {
val inStream = new FileInputStream (f)
val outStream = new FileOutputStream(f)
val eof = false
while (!eof) {
val b = inStream.read()
if (b==-1) eof=true else outStream.write(b)

}

inStream.close()
outStream.close()

}

No performance measurements are available yet, but the tradi-
tional style program must be an order of magnitude faster. For rel-
atively small files the speed of the dataflow program may be good
enough; for larger files it will become slow, with the currently avail-
able SubScript Virtual Machine implementation. However, a more
advanced SubScript compiler or VM could analyse the program
and transform it into something close to the traditional style ver-
sion.
The strength of the dataflow program is that it untwists two tasks:
reading and writing. This way it becomes easier to put some pro-
cessing between these tasks. Moreover, reader and writer
may well be placed in a library, so that you dont have to deal with
the file protocol of opening, processing data and closing. Reader
and writer communicate over unnamed channels using <= and =>.
It is like communicating with standard input and output devices.
This may yield a simple tool set for file handling and data process-
ing; such tools may easily glued together just like is done in Unix
shell language.

6.3.3 Example: Filtering a text file
It is easy to create a file filter using the given reader and writer.

E.g., the following filter would eat away carriage-return characters:

filter(in: File,
out: File) = reader(in) &==> charFilter

&==> writer(out)
charFilter = =>?b:Int

if(b!=’\r’) <=b
while(b!=-1)

6.3.4 Example: Encoding and Decoding a text file
The dataflow programming style combines well with specifying

some syntax in the flows. Consider the task to encode and decode
text files with run length compression. In the encoded file

• a backslash character and a digit are replaced by an escape
sequence starting with a backslash
• a run of two or more times the same character is replaced by a

single occurrence of that character followed by an indicator
of the run length; the indicator is a string representation in
reverse order.

Network pipes with file readers and writers at both ends will do
the encoding and decoding:

fileEncoder = reader,in&==>encoder&==>writer,out
fileDecoder = reader,in&==>decoder&==>writer,out

For the encoder and decoder we need a script lowPriority,
which comes down to an action that only happens when there is
nothing else to do. The encoder and decoder scripts may
reflect the grammar of the unencoded file and the encoded file.
Loosely formulated:

unencodedFile = ..; anyChar; .. sameChar
encodedFile = ..; . ’\\’; anyChar; .. digit

Here sameChar denotes the same character as previously seen as
anyChar. The encoder has a loop:

• read a value from the network
• read zero or more times the same value again (and counting

the occurrences); specify a ”forcing” parameter
• the lowPriority action so that the loop is only exited

when no more same value arrive
• write the escape character over the pipe, if necessary
• write the value over the pipe
• write the run length if it exceeds 1
• the loop ends after processing the end-of-file value (-1)

encoder = =>?c: Int; var n=1;
..=>c {n+=1}; // c is "forcing"
lowPriority;
if (c==’\\’||c.toChar.isDigit) <=’\\’;
<=c;
if (n>1)

(for(d<-n.toString.reverse) <=d);
while (c != -1)

The decoder also has a loop:

• optionally read the escape character (\) from the pipe
• read a character from the pipe; a preceding lowPriority

action makes sure this does not grab the escape character
• optionally read a sequence of digits; use these to reconstruct

the encoded run length
• the lowPriority action, so that the digits must have been

read when available
• write the character once or more times, depending on whether

a run length was give
• the loop ends after processing the end-of-file value (-1)

decoder = .=>’\\’;
lowPriority;
=>?c: Int;
var n = 0;
var p10 = 1; // current power of 10
..=>?c ?if _.toChar.isDigit

{n+=c.toChar.asDigit*p10; p10*=10};
lowPriority;
times(max(n,1)) <=c;
while (c!=-1)

The test ?if .toChar.isDigit is a requirement for the
receive action =>?c.

6.4 Use Case: SubScript Actors
Programming the control flow of actors in Java or Scala is rel-

atively hard, just like with GUIs. In both cases events arrive as
calls to listeners; these listeners then perform some actions. After
this call-back-call the next one will occur at some point. Both GUI
applications and actors may change a state and change the set of
events that they listen to
With SubScript the control flow may be inverted; scripts treat events
and internal actions in an equal way. State is largely maintained
implicitly in these scripts. We describe how SubScript does this on
top of Akka actors. The full power of the Akka framework remains
available because the same things happen under the hood as in plain
Scala versions of the actors:

• There are still partial functions listening to incoming data
• Unexpected messages will be result in a call to ”unhandled”,

just like what is normally done in Akka. (SubScript channels
are less forgiving, just like Scala Actors were in the past.)

6.4.1 Example: Akka’s ExampleActor
The ExampleActor from the Akka documentation6 contains

the following method:

def receive = {
case Request (r) => sender ! calculate(r)
case Shutdown => context.stop(self)
case Dangerous (r) => a.tell(Work(r),sender)
case OtherJob (r) => a!JobRequest(r,sender)
case JobReply(r,s) => s ! r

}

A bit hidden in this specification is the fact that processing stops
when a Shutdown message arrives. A SubScript variant would not
have the receive callback method; instead there will be a live
script, like in SubScript GUI controllers:

live = .. <<
case Request (r) => {sender ! calculate(r)}
case Dangerous(r) => {a.tell(Work(r),sender)}
case OtherJob (r) => {a!JobRequest(r,sender)}
case JobReply(r,s) => {s!r}
>> ;
<<Shutdown>>

This live script is willing to receive and process zero or more
messages until a ShutDown message. After the live script ends
context.stop will be called, somewhere under the hood.

A <<...>> section contains a so called ”partial script”. This is
much like a Scala partial function; the main difference being that
the refinement bodies are scripts.
To the right of the arrows the value sender denotes the actor that
sent the value specified at the left hand side of the arrow. This
is a bit different from the sender in class Actor, which denotes
the sender of the last received message. That definition could be
misleading in SubScript actors when multiple <<...>> sections
are concurrently active.
Two rules enable the concise notation for <<Shutdown>>:

• if there is only 1 case the case keyword may be omitted
• if there is nothing to do in the body this may be left out to-

gether with the arrow

6.4.2 Example: A Finite State Machine
The Akka documentation contains an example of the support for

Finite State Machines (FSM): Consider an actor which shall re-
ceive and queue messages while they arrive in a burst and send
them on after the burst ended or a flush request is received.
The actor receives the following messages:

case class SetTarget(ref: ActorRef)
case class Queue(obj: Any)
case object Flush

The SetTarget message should be the first received message.
As soon as the first Queue message arrives a timeout period starts;
on this timeout, or earlier when a Flush message arrives, the
queue is flushed, by sending the following message to the target
actor.

case class Batch(obj: Seq[Any])

For unexpected incoming messages (e.g. an extra SetTarget
message) warnings should be logged.
6See http://doc.akka.io/api/akka/2.1.2/index.html#akka.actor.Actor

The plain Scala solution from the Akka documentation is:

sealed trait State
case object Idle extends State
case object Active extends State

sealed trait Data
case object Uninitialized extends Data
case class Todo(target: ActorRef,

queue: Seq[Any]) extends Data

class Buncher extends Actor with FSM[State,Data]
{
startWith(Idle, Uninitialized)

when(Idle) {
case Event(SetTarget(ref), Uninitialized)
=> stay using Todo(ref, Vector.empty)}

onTransition {
case Active -> Idle
=> stateData match {

case Todo(ref,q) => ref ! Batch(q)
} }

when(Active, stateTimeout = 1 second) {
case Event(Flush | StateTimeout, t: Todo)
=> goto(Idle)

using t.copy(queue = Vector.empty)}

whenUnhandled {// common code for both states
case Event(Queue(obj), t @ Todo(_, v))
=> goto(Active) using t.copy(queue=v:+obj)

case Event(e, s) => log.warning(
"unhandled request {} in state {}/{}",

e, stateName, s)
stay

}
initialize

}

The SubScript version is shorter:

class SubScriptBuncher extends SubScriptActor {
val timer = new ScriptTimer
var target: ActorRef = _
var q: Seq[Any] = _ // q shorthand for queue

script..
live = <<SetTarget(ref) => {target=ref;

q=Vector.empty}>>
(.. <<Queue(obj) => {q+=obj}>>

if (pass==0) timer.start
; <<Flush>> + timer.timeout(1 second)
; {target!Batch(q); q=Vector.empty;

timer.stop}
; ...
)

def unhandled = {
case e=>log.warning(

"received unhandled request {}", e)
} }

Here timer is an object with a start method and a script that
handles a timeout event after a given time has passed by.
pass is a loop counter; the condition pass==0 makes sure the

timer gets started only once in each burst.
Note that the logged warning message does not give state informa-
tion, unlike the plain Scala solution.

6.4.3 Example: Parallel Computation
An actor typically performs a task upon request and sends the re-

sults back, or to another actor. To exploit parallelism for quick cal-
culation, the actor may split the received task and delegate the parts
to newly created other actors. After all delegates have returned their
results, the aggregate result is available and the delegating actor is
ready to send it on. The following code does this in conventional
Akka style 7:

var initializationReady = false
var activeActors = 0
var sum: Double = 0

def receive = {
case context: Context =>
sum = 0 //reset the instance variables
activeActors = 0
for(task <- context.tasks) {
val actor = actorOf[Delegate].start
actor ! DoTask(task)
activeActors += 1

}
initializationReady = true

case delegateResult : Double =>
sum += delegateResult
sender.get.stop
activeActors -= 1
if(initializationReady && activeActors<=0) {
clientActor ! sum

} }

initializationReady , activeActors and sum are an
instance variables rather than local variables, because these are
used in two distinct parts of the partial function that is handed to
receive. A test determines whether the calculation has com-
pleted and the result should be sent to the clientActor.
The SubScript version is about half the size:

live
= ...
<< context: Context
=> var sum: Double = 0

(for(task <- context.tasks)
& {!val actor=actorOf[Delegate].start
actor ! DoTask(task) !}
<< d:Double
=> {sum += d; sender.get.stop}
>>

)
{clientActor ! sum}

>>

This version does not need to keep track of the state as recorded by
initializationReady and activeActors. sum may now
be a local variable, because everything happens in the live script.
The delegate actors are created and started in a parallel loop; in the
same loop the results are collected. When all branches of the loop
have finished, the total computation is ready; then the result is sent
to the clientActor as the final action.

7Based on https://github.com/yannart/ParallelPolynomialIntegral

7. RELATED WORK
Shivers[Shivers(1996)] argued that task specific sublanguages

should be embedded in a syntactically extensible universal lan-
guage. He extended the language Scheme this way with Unix like
support for processes, including pipelines.
Linda [Carriero and Gelernter(1989)] is a coordination and com-
munication model for tuple data stored in an associative memory.
Processes store and retrieve these tuples; for the retrieval tuple
fields may or may not be required to match specific values. The
asynchronous tuple communication implies loosely coupled pro-
cesses. In SubScript process communication is synchronous, but
it is possible to spawn processes; when a send action is spawned
this becomes in effect a partner for asynchronous communication.
Moreover, the same kind of matching by field values is supported
as in Linda; output values for retrieved fields are in both Linda and
SubScript marked with question marks.
Futures [Flanagan and Felleisen(1999)] are constructs that act as
proxies for values that are initially unknown, and of which the com-
putation is thereafter ongoing or complete. These are available in
libraries for languages such as Java and Scala. E.g. in an addition
of two futures x+y the operands x and ymay be computed in back-
ground threads; when the value of the result expression is needed,
the results of the background threads are awaited. Thus simple
code fragments express at the same time both concurrency and a
computational relation. In SubScript these two are separated and
comparable specifications are therefore less concise. On the other
hand futures require an explicit call back style; the the control flow
is in a data element (the Future) and its associated call back code. In
SubScript the control flow is more explicit. The more complicated
the computation dependencies are, the more useful the futures ap-
proach seems over SubScript.
The Orc programming language[Kitchin et al.(2009)Kitchin, Quark,
Cook, and Misra] has a calculus with four types of combinators;
two of these may be described as parallelism and failure continua-
tion (”otherwise”); the other two are a kind of networking operators
describing dataflow. Other idioms such as or-parallelism can be ex-
pressed in terms of combinators.
Grammar specification formalisms are closely related to ACP. They
are applied in numerous parser generator languages, such as YACC
[Johnson(1979)]. These interoperate to varying degrees with a base
language; they yield parsers that are driven by tables rather than
call graphs; therefore their speed is higher than SubScript. Also
they offer more convenient means to express syntax and semantic
parser actions. For SubScript it is still a big challenge to match
the grammar specification power of the 43 year old YACC. On the
other hand parser generator languages do not support parallelism
and their usage is largely restricted to text parsing.
Scala Parser Combinators is a DSL in regular Scala that supports
grammar specifications. A parser combinator specification may
share some visual elements with SubScript parsers: carets and ar-
rows, though these have a different meaning. Using plain Scala has
both positive and negative sides: on the one hand standard Scala
tools apply; there is no need to learn new syntax; on the other hand
this makes some boilerplate code inevitable.
Toolbus[de Jong and Klint(2002)] is a coordination architecture
based on ACP extended with data terms. Internal Toolbus processes
may communicate data using standard ACP style. Toolbus focuses
on control flow and data flow between Toolbus processes and ex-
ternal programs.

8. CONCLUSION
The main concepts for dataflow programming are already about

half a century old, and still nearly absent in mainstream program-

ming languages. This paper has shown how a nondeterministic and
concurrent programming language may benefit from dataflow con-
structs. Ideas inspired by YACC appear to be well applicable to
GUI controllers. Pipes, as known from Unix command shell lan-
guage, may also ease software composition at the program level,
as opposed to the operating system level. Actor programs may get
a clearer control flow using nondeterministic and concurrent lan-
guage constructs.
Performance may be an issue, in particular when the piping con-
structs are used between components for stream input, output and
various kinds of filtering. Each communication action may involve
thousands of machine instructions, so character by character com-
munication will be slow. Possibly an optimizing SubScript virtual
machine will be able to reduce the performance penalty.
An open source project8 implements SubScript as a branch of the
regular Scala compiler, bundled with a virtual machine and a library
with scripts for Swing GUI events. The dataflow features that this
paper highlights are at present being added to the implementation.

APPENDIX
A. REFERENCES

J. C. M. Baeten. A brief history of process algebra. Theor.
Comput. Sci., 335:131–146, May 2005.
R. S. Carl Hewitt, Peter Bishop. Artificial intelligence a
universal modular actor formalism for artificial intelligence,
1973.
N. Carriero and D. Gelernter. Linda in context. Commun.
ACM, 32:444–458, April 1989.
H. de Jong and P. Klint. Toolbus: The next generation.
volume 2852 of Lecture Notes in Computer Science, pages
220–241. Springer, 2002.
C. Flanagan and M. Felleisen. The semantics of future and
an application. J. Funct. Program., 9(1):1–31, Jan. 1999.
H. Goeman. Towards a theory of (self) applicative
communicating processes: A short note. Inf. Process. Lett.,
34(3):139–142, 1990.
C. Hoare. Communicating sequential processes. ACM
Computing Surveys, 7(1):80–112, 1985.
S. Johnson. Yacc: Yet another compiler- compiler. Technical
report, Bell Laboratories, 1979.
D. Kitchin, A. Quark, W. Cook, and J. Misra. The orc
programming language, 2009.
R. Milner. A Calculus of Communicating Systems.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1982.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, part i. I AND II. INFORMATION AND
COMPUTATION, 100, 1989.
M. Odersky, L. Spoon, and B. Venners. Programming in
Scala. Artima, Mountain View, CA, 2008.
O. Shivers. A universal scripting framework or lambda: the
ultimate ”little language”. In Concurrency and Parallelism:
Programming, Networking and Security, pages 254–265.
Springer-Verlag, 1996.
A. van Delft. Subscript: Extending scala with the algebra of
communicating processes. Scala Days 2012.

8Subscript web site: http://subscript-lang.org

