Subscript: Extending Scala with the
Algebra of Communicating Processes

André van Delft

andre dot vandelft at gmail dot com

Abstract

Most programming languages offer relatively little or ngpart
for parallelism and non-determinism. Support would in jcatar
be very useful for specifying event handling and backgroprad
cessing in applications with graphical user interfaced,fanspec-
ifying grammars of input data. To improve the situation,greom-
ming languages may be extended with constructs adoptedtfrem
theory named Algebra of Communicating Processes. Thisées b
done in Subscript, which is a extension to Scala. Examplew sh
how Subscript is useful for programming GUI controllers e t
MVC paradigm.

Currently Subscript is implemented as a DSL, using a rureim
brary named the Subscript VM. This VM has been written in @abou
2000 lines of Scala code. It maintains a call graph, that gramnd
shrinks as a Subscript program runs. The semantics of thedae
is mainly determined in terms of the rules for this graph mpata-
tion. subscript VMs have some freedom in these rules, sdtlest
can specialize, e.g. for real time constraints, probadsljittimed
simulations and parallel processing.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Languages, Theory

Keywords Process Algebra, Algebra of Communicating Pro-
cesses, parallel programming, non-determinism, GUI puogr
ming, MVC Controller, simulation

1. Introduction

Our intellectual powers arerather geared to master static relations
and that our powersto visualize processes evolving intime arerel-
atively poorly developed. For that reason we should do (as wise
programmers aware of our limitations) our utmost to shorten the
conceptual gap between the static program and the dynamic pro-
cess, to make the correspondence between the program (spread out
in text space) and the process (spread out in time) astrivial as pos-
sible.

These wise words are from the famous paper Goto statement con
sidered harmful that Edsger Dijkstra wrote in 1968. In thdags
many programmers tended to use tjgto statement, which too

[Copyright notice will appear here once "preprint’ opti@rémoved.]

often obscured the control flow. The resulting programs vaere
scribed asspaghetti code . In the years after this paper, the use
of goto statements decreased, also by improving choicetend i
ation constructs in programming languages. By 198Qctured
programming had become widely accepted.

But spaghetti code returned, although this was not immelgiat
recognized. Programs got graphical user interfaces, amgrgm
behavior started to be driven by user generated events. st dir
main event loop would handle these events. Programming such an
event loop was tedious, but the code was still understaadats
the user interfaces became more advanced, the coding cdtyple
increased. For instance, time consuming tasks requiragiadpare
so that they would not block user input.

Around the year 2000 programming interactive applicatibad
become really hard. Spaghetti code was needed to handiadd k
of input events; the screen needed to be updated in a spacdat,
and background threads had to keep the application resjgordss
aresult, too many applications, even professional oneszéthese
days the GUI time and again.

The main cause for the trouble is that the applied programmin
languages offer inappropriate support for event-drives jzarallel
programming. Event handling and multithreading are uguatt
plemented using dynamically created objects. Manipujatirese
data items largely determines the flow of control. This is miass
clear than the use of explicit control flow constructs, thagpam-
ming languages offer for concepts such as choice and erati
This paper presents Subscript: a Scala extension with soich ¢
structs, taken from the Algebra of Communicating Processes

2. The Algebra of Communicating Processes

The Algebra of Communicating Processes (ACP)[2] an algebra
approach to reasoning about concurrent systems. It is a evenfib
the family of mathematical theories of concurrency knowmpms
cess algebras or process calctilMore so than the other seminal
process calculi (CCS and CSP), the development of ACP fdcuse
on the algebra of processes, and sought to create an abgtaet-
alized axiomatic system for processes and in fact the teooegs
algebra was coined during the research that led to ACP.

ACP uses instantaneous, atomic actions (a,b,c,...) asitspnim-
itives. Two special primitives are the deadlock procésmd the
empty process. The primitives may be combined to form pro-
cesses using a variety of operators. These operators candiely
categorized as providing a basic process algebra, comoyrrand
communication:

e Choice and sequencing the most fundamental of algebraic
operators are the alternative operator (+), which provales
choice between actions, and the sequencing opera}pwhich

1This description of ACP has been based on its item in Wikipedi

2011/12/27

specifies an ordering on actions. So, for example, the psoces Many extensions to ACP have been developed, e.g. interngt a
(a+b)-cfirst chooses to perform either a or b, and then performs disrupt operators, and notions of time and priorities.

action c. How the choice between a and b is made does not Since its inception in 1982, ACP has successfully been egpli
matter and is left unspecified. Note that alternative coritipos to the specification and verification of among others, cominain
is commutative but sequential composition is not (becanse t tion protocols, traffic systems and manufacturing plants.

flows forward).

e Concurrency to allow the description of concurrency, ACBpr 3. From ACP and Scala to SubScript
vides a merge operatdy, This represents the parallel composi- :
tion of two processes, the individual actions of which aterin Itis well possible to add ACP-like expressions to impesipro-

leaved. As an example, the procéssb) || (c-d) may perform gramming languages. This has for instance been done int8¢rip

the actions a, b, ¢, d in any of the sequences abcd, acbd, acdb Seduence of extensions to C, C++ and Java. Subscript ik fol
cabd. cadb. cdab. ' ' up, extending Scala while staying closer to ACP. Howevestah

o _) .) are still many small and big differences between ACP and the S
 Communication pairs of atomic actions may be defined as com- gcript extension.
municating actions; they can then not be performed on their 1o describe the Subscript language constructs, various oror
own, but only together, when active in two parallel processe |ess vague phrases are used rather loosely below, suchctisaza
This way, the two processes synchronize, and they may ex- tion”, "happen”, "success’, “failure”, "suspend”, “resiat) "pro-
change data. cess”, "parent”, and "ancestor”. These relate to a "Callghfa
model for executing SubScript programs. A call graph is amtlac
directed graph; it grows downwards by activating nodes toac
dance to the static parse trees of called scripts. Procesatops
will be represented by parent nodes; atomic actions by Ieasgles.
Inside this call graph, several kinds of messages are samg al
t4+y = y+zx the edges. E.g. when an atomic action starts, this is repoie
wards in the call graph. If that report arrives from a certztiiid

ACP fundamentally adopts an axiomatic, algebraic appréach
the formal definition of its various operators. Using theaiative
and sequential composition operators, ACP defines a basiess
algebra which satisfies the following axioms:

@+y)+z = z+@+2) node at a node representing a "+" operator, then that noddssen
r+r = @ "exclude” messages to all its other children, so that anyect
(z+y) 2z = z-z+y-2 atomic actions in those branches will be deactivated.
(z-y)z = z-(y-2) After completion, an atomic action will reportsa.ccess mes-

) o _ sage upwards; thereafter it deactivates. The same doedilen
The special primitivesy and e behave much like the 0 and 1 node. A sequence node that receives a success message fritain a ¢

that are neutral elements for addition and multiplicatiorusual node, will activate a next child, if applicable given the gmtree;
algebra: otherwise the sequence node will send a success messagdgs to i
St — = parent.
5 s Section 7 discusses the call graph semantics in more detail.
R —
ex = T 3.1 Lexical differences
r-e = x ACP specifications apply quite some mathematical symbals. F

a programming language, it is in principle desirable thhtlar-
acters are easy accessible on the keyboard. On the otherithand
would as well be nice if SubScript would have some matheraktic
look and feel, using symbols likg € andv for deadlock, an empty
(z+e)-y = z-y+e-y process and a neutral process. Since these symbols aresydbea
type, predefined symbols (-), (+) and (+-) exist for thesepsses.
The variants with the Greek symbols are defined in a 'Predaf’ o
The parallel merge operatdris defined in terms of the alter- ject.

There is no axiom fox: - 4. It just means: x and then deadlock.
x + e meansoptionally x. This is illustrated by rewritingz +¢) - y
using the given axioms:

= z-y+ty

native and sequential composition operators. This defmitilso ACP symbols for choice, sequence parallelism are +, ; and
requires two auxiliary operators: &. As a courtesy to the ACP scientists, the multiplicativet do
2 lly = 2lly + ylz + |y is available for multiplication too in SubSqript: Just like Math '
and ACP the operator symbol for multiplication (here dempti

sequence) may be left out. SubScript has a wider range oégsoc
x|y - "left-merge”: x starts with an action, and then the rest of x operator symbols; their operator precedences follow Sadés,
is done in parallel with yz|y - "communication merge™ x andy except for the strongly binding The spacing without operator
start with a communication (as a pair of atomic actions), et binds stronger than
the rest of x is done in parallel with the rest of y.

3.2 Scripts

SubScript adds ACP process expressions to Scala in a new kind
of class members, next to variables and methods: so caltgdssc
These are much like methods, but they are refinements of ggoce
expressions, rather than statement sequences. A scripttioefi
starts with the wordscript rather thardef. The following script

is defined as a single atomic action, executing Scala coderings

The other defining axioms for the parallel merge are quitk-tec
nical, and they are not replicated here.

A different way to define the operators is by means of a tech-
nique called Structural Operational Semantics. Howe\ar,de-
scribing the semantics of SubScript it seems to be lesscathd.

In 1990, Henk Goeman unified Lambda Calculus with process

expressions, but that work has remained largely unknowarttgh "Hello™
thereafter, Robin Milner started Pi-calculus, which alsmbines ’
the two theories. script hello = {println("Hello")}

2 2011/12/27

Like methods, scripts may be implicit, abstract, or ovengd
The script parameters are a different from method parasietach
script parameter is of kind input, output or constrainedereas
method parameters are of kind input. Output parameters areath
by a single question mark; constrained parameters have te®-q
tion marks, as in:

script read(i: Integer?)
script readForcable(i: Integer??)

The first script should be called with an actual output patame
as inread(j7). The second script may be called that way, but also
with a specific "forcing” value, or with a less forcing coreitit, as

in

readForcable(10)
readForcable(j? if (j<=10))

3.3 Native language interoperability

Scripts may contain Scala code in various flavors of code- frag
ments, in actual parameter lists of script calls, and in rsdwher
constructs. Such Scala code may refer to a special valuechame
here, which refers to the "current operand” of the active process
expressionhere is much likethis, the current object. Through the
value "here” various useful run-time features are accéssguch

as a statehere may also be used as an implicit value.

To call a script from Scala, it is useful to have a bridge mdtho
that adds a so called Script executer as a parameter, ands état
executer. The caller of the bridge method can query the rretur
result about the state in which the script had ended: succdas-
ure. Failure occurs when in ACP terms the script ends esdignti
as the deadlock proce8s

def hello: ScriptExecuter = {
ScriptExecuter se=new BasicScriptExecuter
hello(se); se

}
def test = {println(

if (hello.succeeded) "OK" else "NOK"
)}

Such a bridge will also be generated using an annotation:

O@BasicScriptExecuter
script hello = {println("Hello")}

A "main(args: Array[String])” script in a declared objecahsuch
an implicit annotation. This creates a bridge method tHattfely

replaces the "main” method of the object. For instance, oHevi-

ing SubScript program would print "Hello™:

object Hello {
script
main(args: Array[String]) = {println("Hello")}

Other executers than the BasicScriptExecuter may offgya@tip
for specific application requirements, such as real timmaulkition
time, randomization, and parallel processing.

3.4 N-Ary Operators

SubScript offers the main process operators of ACP, but sathe
syntactic and semantic differences. There are also maey ofier-
ators in SubScript; some of these are very useful and imtyithe
presence of more esoteric ones in the language specifiaatgn
be less justified. Fortunately these operators are all giritdar so
they do not impose a heavy syntax burden.
Still, a better option could be to have these as user defined op

erators, more or less standardized in a library. But in thaecthe
language definition should ensure that script executerdaadle

such operators. In order to learn such requirements, theréso
operators remain for the time being in the language defmitio

3.4.1 Aty

The ACP operators for sequence, choice and parallelismrare i
principle binary, but as they are associative, the opesatay also

be considered to be n-ary. In SubScript they they are notedae
any more, and therefore they are defined as n-ary operatdrasn
binary ones.

This non-associativity is caused by the existence of soreeiab
types of operands, that turn expressions into iteratiartead break
away from an expression. For instance, consider the fotigwivo
specifications:

(..A)B - a sequence of one or more As, and finally B
..(AB) - a sequence of one or more sequences of A and B

Here the two dots denote an iteration and at the same time an
optional exit point.

3.4.2 Commutativity

Operators such as + that are commutative in ACP are even not
commutative in SubScript. When an expression y is activated,
then first the x part is activated and then the y part. The jrogner
should know this activation order; it implies that evaloas (e.g.

for the conditionals in if-expressions) in x precede thesaney.

In a sense commutativity still holds: when writing an exgies
with the + operator, the programmer normally expressesntesf
that there is a choice of the atomic actions sequences betiliee
operands, and he does not care which operand will get priorit
It is up to the script executer to determine this prioriti@af the
executer may even randomize.

3.4.3 Sequences

Having multiple ways of expressing sequences occasioradly
lows for smaller code, with less parentheses. We use thetfatt
the semicolon binds weakly, whereas the "space operatoisbi
strongly. For instance, a sequence of A's terminated by a 8dvo
initially be

(..;A);B

or
(..A)B

The parentheses are not needed if we us just one semicolon:
..A;B

3.4.4 Parallelism

The ACP parallelism operatdf, is a simple kind of "and-parallelism”.
It succeeds when each of its operands succeeds. Other fédrms o
parallelism would occasionally be useful as well, such agpk
or-parallelism. SubScript supports both flavors of paliale, with
symbols& and|. Analogous to boolean expressions in C and other
languages, SubScript has also stronger versions for amtlolan
parallelism, and even for "equal-parallelism”:

& "and parallelism” or "normal parallelism”: succeeds
when each operand succeeds
| "or parallelism”: the succeeds as soon as any operand
does so
&& "strong and”™: the whole ends as deadloékds soon

as one operand does so
Il "strong or”: the whole ends successfully as soon as
any operand does so
"equal parallelism”: this succeeds like & when each
operand succeeds, but it also succeeds when each
operand has ended as deadlock

2011/12/27

The latter operator is only experimental, for the time being
It makes the set of parallel operators logically more coneple
There is no "not-equals-parallelism”, since that may benterin-
tuitive for an n-ary operator. However, there are also drpental
unary negation operators which combined wite= may accom-
plish "not-equals-parallelism”.

3.4.5 Networks

Another special n-ary operator is<==>>. This is much like
"normal” parallelism (using &), but it also describes a netlwthat
restricts certain kinds of communication actions. Thesaroani-
cation actions are either send or receive actions, and niagres
should end inc= (for send) or=> (for receive). Thec <==>>
defines a topology that interconnects every subset of ogsrgot
just every pair, since communication is n=-ary in general).
Variations of the network operator symbol may impose restri

tions on the topology. The following variations are possibl

K== <<== ==> ==>> <==> <<K==> <==>> <<==>>

If the arrow is only one-sided, then communication can omlyrg
that direction. A single arrow head(or >) instead of a double
(<< or >>) denotes that communication can only be to the adja-
cent operand in the corresponding direction. E.g., in

pl<==p2<==>>p3<==>pd==>p5

process p2 may send to pl and p3 and p4, etc.

==> corresponds with pipes in Unix shell languages.

Inside the network arrows, special annotations may be glace
between braces, that further control the topology. Foaimst,

=={myPipe}==>

would give this part of the network annotatiany Pipe. A similar
annotation for a send action in the left operand of the arroulct
effectively restrict that action to this pipe. SubScripedmot en-
force such behavior; it should be defined in the classigPipe.

The network arrows may also be marked with value tuples, as
in <<== (i,j) ==>>. This can be picked up by a topology
controller that is specified using an annotation. E.g.,

O@myTopology: (
for (i<-0 to m; j<-0 to n) <<=(i,j)=>> p(i,j)
)

myT opology could for instance impose a torus topology by allow-
ing only connections between "adjacent” i,j pairs.

3.4.6 Left-merge Operators

For each parallel operator there is a left-merge versioth wai
symbol equal to the original symbol with™appended:
& &&- |- <L==>>-

interruption is mandatory; it becomes effectively optionben the
right hand side is made optional.

The interrupt operator symbol has two characters, one oflwhi
is %. It belongs to an experimental family of suspend/resapes-
ators, each starting with a % character in its symbol. Twdesé
don’t have a neutral element:

x%&y x andy in any order. As soon as x starts, y is sus-
pended, and vice versa. As soon as X has success, y
is resumed, and vice versa. Similar, but not equal, to
Y + yxr
first x and then y, with x and y both optional, but when
x does not happen, y must happen. Similar, but not
equal, tax(y +¢) +y
x and y in any order and both optional, but at least
one of the two must happen. Similar, but not equal, to
z(y+e) +y(x+e)

X interrupted by y; x happens, but y as well; x is
suspended as soon as y starts to happen. When y is
(or may be) ready, x is (or may be) resumed

x sequentially interrupted zero or more times by y

X%y

x%%y

x%ly

xX%/%ly
3.4.8 Deadlock continuation operator

In normal sequences of the formy, y may start when x succeeds.

A dual kind of sequence is!;y, meaning: y may start when

x ends in deadlock. This is useful for text parsers: as soon as
deadlock occurs because the input text does not match disgeci
grammar, then the execution falls through this operatohabdn
error message may be given.

3.5 Neutral elements

Most of the introduced n-ary operators have a neutral elemen
which is in ACP terms eithed or e. We will call these operators
or-like and and-like respectively.

Or-like + | Il / %; %%
And-like ; & && %l %&
Neither == %/%/

A special operand i3/, named the neutral process. If this
operand belongs to an or-like operator, thehehaves likej. For
and-like operators and in "unclear” circumstances, therakpro-
cess behaves like

The neutral process is implicit in the definition of if-expséon
without an else-part, and also for operands such as iterator

Since working with Greek symbols is at times problematic,
Subscript defines—), (+) and (+—) for the deadlock, empty
process and neutral process. The Greek symbols are defined
scripts in the subscript.Predef object.

as

3.6 Unary operators

The right-hand side only becomes active when an action at the Tere gre some unary operators on expressions:

left hand side occurs for the first time. The postfix expresses
that there is sequential dependency.

3.4.7 Disrupt, Interrupt and other Suspend/Resume
Operators

ACP has an extension with "modal transfer” operators forugtis
tion and interruption. Subscript has similar operators:

/ disrupt: x/y means that x happens, possibly disrupted
byy
%/ interrupt: x%/y means that x happens with 1 interrup-
tion by y

The interrupt definition is different from the official oneACP.
The latter denotes optional interruption; it cannot modahdatory
interruption, which is an unnecessary limitation. In Sulpgche

IX negation; ends in deadlock when x ends successfully,
and vice versa
strong negation; ends in deadlock when x ends suc-
cessfully, and vice versa. -x also succeeds when an
action in x happens without x succeeding
action tracing; succeeds when an action in x happens
process spawning. After activation, x executes in par-
allel with its parent process p, as if p had become
p&x. This parent process is by default the highest
level script that had been called from the base lan-
guage
marking of a anchor place for spawned processes
Spawned process starts to run in parallel to its nearestignpa
process as seen in the call hierarchy

-X

~ T
*X

**X

2011/12/27

The latter two are not allowed by Scala rules on unary prefix
operators. This may turn out to be undesired; maybe anotagr w
will be found to express launching and anchor places.

3.7 If-else, Match and Ternary Operator

Just like Scala, SubScript offers if-else and match coottruhe
difference being that operands such as the then part angaise
are script expressions rather than pieces of regular Sodka c

if (b) x
behaves as if the else part is neutral, so it is shorthand for
if (b) x else (+-)

There is also a ternary operator, that has 3 processes andper
xz?y : z does x; when that has success, y may start happening.
In case x ends in deadlock, z starts. x? y: (-) behaves muek;ik
A difference is that such a sequence cannot become andtera®
(+): y behaves much like x!;y. Again it cannot become an ttera
Binary usage is also allowed: x? y is shorthand for x? y: (fdis
a good means to express a either precondition or a postammdit

3.8 lterating and Breaking Operands

There are 6 operand for supporting iterations and breaking:
while marks a loop and an conditional mandatory break
point
a for-comprehension, like while marking a loop and
a break point
marks a loop; no break point, at least not here
marks a loop, and at the same time an optional break
point
. an optional break point
break a mandatory break point

Note that these are operands; they often belong to a seglenti
operator, but the iterations may as well be alternative oalfz.
The relation "belongs to an n-ary operator” shines througary
operators, script calls, if expressions, etc. An activatecator
operands (while, for, ... and ..) acts on its n-ary operasoif the
operand list in its specification text is repeated an infinitenber
of times.

while(b) behaves much likef(b)...else break. For the for
operand something similar holds. Whéneak is activated the
related n-ary operator starts acting as if its specificatén has
no more operands. This is another reason why commutatisity i
strictly broken for "+” and parallel operators.

.. behaves much like a combination o&nd.... The optional
break lets its related n-ary operator optionally stop atitig its
operands. What exactly happens depends on the kind of the se
quential operator:

for

¢ A sequential operator will succeed and also activate the nex
operand. E.gr.y does x; thereafter it may stop or continue with
y. It behaves much like; (+) + v, if we disregard the effects
of iterating and breaking operands in y.

¢ Most operators will on activation activate its operandsifieft
to right until a break is encountered. If the break is a haezky

code fragments. These are operands with pieces of Scala code

e Avariable should be a direct operand of a sequential operato
e Avalue should be a direct operand of any kind of n-ary operato

Both variables and values can be used only in subsequerarajser

3.9.1 Looping Local Variables and Constants

A local variable or value may be initialized using a "looging

expression. E.g.,
val i=0...(i+1)
Like "...", such a declaration turns its related n-ary operénto an

iteration. The value i becomes 0 during the first iteratioaspan
subsequent passes it becomes the value of the previousSpetse

following fragment has two iterators; it will print 0 to 9:

val i=0...(i+1) while(i<10) {println(i)}

A parallel variation will do the same; each parallel pass gét its
own copy of the value i:

val i=0...(i+1) & while(i<10) & {println(i)}

3.9.2 Private Local Variables

Sometimes different operands of an n-ary operator need dtei
copy of a variable. Then a "private” declaration would befuke
For instance consider a variation of the previous example:

var i=0; while(i<10) & {println(i)} & {! i+=1 !}

This will print 10 times the number 10: the execution of alhgin
actions take place after all have been activated, and aételn e
activation the variabléis incremented. A "private” declaration will
then ensure that each println action gets a private copy of

var i=0;
while(i<10) & {!i+=1!} & private i: {println(i)}

This prints numbers 1 up to 10.

3.10 Code fragments
The atomic actions of ACP have their SubScript counterparts

enclosed in braces. However, it is often more accurate tdrey
the start and end of the code fragment execution are like ACP
atomic actions. This allows code fragments to model lonasting
actions, such as code running in a separate thread, or cate th
simulates to take a nonzero duration.

A special kind of code fragment does not behave like an atomic
action, but a9 ore.

then no more operands are activated any more. If the break isa | ne Script Executer may determine the way code fragments are

soft break, then activation will continue after an atomitiac
has started in one of the just activated operands.

Apart from these effects, all iterating and breaking opdsarehave
like the neutral process.

3.9 Local Variables and Values

Local variables and values are written down as in Scala usiag
keywords var and val. A for comprehension may also imply a new
local value (not a variable).

executed. Examples of such executor types are:

¢ A discrete event simulation engine
e A probabilistic engine doing Monte Carlo execution
o A scheduler for parallel hardware

Code fragments are always enclosed in braces. Symbolsmext t
the braces denote different flavors:

2011/12/27

{ code} plain code fragment. Normally, no other actions

it may also add some constraints. This is done Scala styhg tise

take place between the start and end of this keywordif, as in

fragment. However, a simulation engine may
attribute a positive duration to this fragment, so
that other actions may come in between. The

var i: Int r(i? if(i>=0&&i<=9)) a(i)

Such a single-parameter constraint condition is evaluaitdthe

same happens when an executor defers the codéormal value of the corresponding parameter of the calleibisc

asynchronously to the GUI thread

threaded code fragment. This code fragment
normally runs in its own thread, but the script
executer may assign it to a thread pool

{* code *}

{? code ?}
fragment may not reflect a happening atomic
action, but instead or . It may even get state
undetermined, meaning that it remains eligible
for another execution

immediate code fragment. Executed immedi-
ately upon activation. This normally gets the
ACP meaning ot, but that may be overridden
by the code to becomeor v

{! code 1}

{. code }
cuted by an installed event handler, e.g. for han-
dling keyboard or mouse input. Normally it be-
comes an atomic action shortly after the code
execution, but the code may set it to behave like
? or undetermined

looping event handling code fragment. The
code may also trigger an optional break from
the loop or a mandatory break, as by calling
here.optional Break andhere.break

{...code ..}

3.11 Script calls

Script calls are operands that may look like method callstHmy
have extra support for output parameters and matching redmist
Output parameters are neither present in ACP refinementsnno
Scala methods.

3.11.1 Output Parameters

Refinements in ACP may have value parameters. This leadste sp
ifications with mathematical Sigma symbols, standing forapze-
terized addition. For instance, suppose a number i betwesd0
9 is read from a channel, depicted by r(i); then some actigrisa(
performed. In ACP this would typically be written down like

9
ra = Zr(z) -a(i)
=0
Programmers would be much more familiar with a solution that

would not require a sigma. SubScript therefore offers adupau
rameters. For instance, a script definition could start with

r(i: Int?) = {i=computed}

The question mark suffix denotes that parameter i is an output
parameter. Then the following call would be allowed:

var i: Int r(i?) a(i)

3.12 Constrained Parameters

The previous definition of the r script allows it to yield anymber

of type Integer. We may want to restrict the received valoethé
range 0..9, as in the ACP example. This would be possibleeif th
parameter i in the script definition gets a double questiomkma
suffix:

script r(i: Int??) = {i=computed}

This makes the parametéra constrained output parameter. The
caller of such a script may specify a normal output parambter

event handling code fragment; meant to be exe-

Only when script call succeeds are formal parameter valogied
onto the actual output parameters.

Normally the definition of script should ensure that its atomic
actions may only happen if the constraints evaluate to Fhis is

unsure code fragment. When executed, the codepossible for instance using:

script r(i: Integer??)
= {? i=computed; if (!(_i.matches) here.fail 7}

So a parameter may be referred to byi; this returns an object
that has a method namedatches. Other available features are
value, originalValue, and kind (which returns the kind of the
corresponding actual parameter).

A convenience method doing the same check for all parameters
in one go, is

script r(i: Int?7)
= {? i=computed; here.matchParameters 7}
3.13 Forcing Parameters

A special kind of constraint is calling the script with a valpa-
rameter without a question mark suffix. Such a parameterliscca
a forcing parameter:

r(1)

3.14 Adapting Parameters

Formal constrained parameters may be transparently pissedh
script calls, by having the parameter list enclosed in phesges:

r(i??)
Optionally a postfix test may be added, as in:
r(i?? if(i%2==0))

In both callsi is said to be an "adapting parameter”. Inside script
r, accessing: has the same effects as insitle

script rr(i: Int??)

script rr(i: Int??)

3.15 Annotations

Annotations in SubScript are a bit different from the oneSdala.
They start with "@”, but then they contain some code instefad o
a class name, and they are terminated by a colon, &xinle :
term.

The annotation code executes when its operand is about to
become activated. There is often a need to refer to that npgena
the code. That is done using the the fikld-e.there. That has also
an implicit shorthand valughere, which is also implicit, instead
of here.

Annotation code may install handlers with code that be dalle
on occasions of activation, deactivation, suspension asdnmp-
tion. For instance, an annotation may install such handieis:

Q@codel

there.onActivateOrResume {code2}
there.onDeactivate {code3}
there.onDeactivateOrSuspend{coded}:

3.16 Communication

In ACP atoms a, b, ¢ denote normally atomic actions, but they
may alternatively be partners of pairs of communicatingoast
For instance, it may be defined that atoms a, b and ¢ commanicat
in the possible pairs (a,b) and (a,c), yielding some atowtioas d

2011/12/27

and e. At the top level of an ACP program, single occurrentes o
b and c are hidden so that these can not be mistaken as autasomo
atomic actions.

In SubScript, no such hiding is needed, as it has speciatlihd
communicating scripts that will not act on their own. Fortamee,

script a,b = {println("hello")}

Whena andb have been activated in parallel to one another, their
shared action that probably prints "hello” may happen. seaanly
a is active, no action would follow; the activewould just have to
wait for a partneb; maybe it will be deactivated before that would
happen.

In casea may also communicate with a partner SubScript
prescribes that these alternatives are marked, by writing=
instead of= in the definition.

script a,b += {println("hello")}
script a,c += {println("world")}

This is a bit similar to marking overridden methods in Scaithw
the keyword "override”.

3.16.1 Multiple Communication Partners

Unlike in standard ACP, SubScript communication may ingolv
more than 2 partners:

script a,b,c = {println("hello")}

A normal script may be regarded as an efficient kind of communi
cation, involving only 1 partner. It is possible to expresatta can
act on its own, but also as a partner in a communication:

{println("hello")}
{println("world")}

script a +=
script a,b +=

In case both an eligible andb have become active, it is up to
the script executer to decide what communicatiervg a, b) gets
precedence.

Even any number of partners with a given name and signature
may be allowed to communicate:

script a.. = {println("hello")}
script b,c.. = {println("world")}

So 1 or more calls to a could together do "hello”, and 1 call to b
and 1 or more calls to ¢ could together do "world”. Unless spec
fied otherwise, a script executer execution must bind a maxim
number of partners. That is, a set of partners is allowecc#iitnot

be extended any more with other active calls.

3.16.2 Communication Body

The body of a communication in ACP may be a normal atomic
action, but also an atom that wants to communicate in turn. In
SubScript, any kind of script expression is allowed as thayhuf

the communication.

script a,b = {println("hello")} {println("world")}

Normally a communication body should be built up from atomic
actions. Syntacticly it is possible to abuse the freedorch a1$ in:

script a,b = ..
script c,d = (+-)

Such definitions are not recommended, but their behaviode-is
fined. For instance, (+-) behaves like (-) if each of the comicar

tion partners belongs to an or-like operator; else the iabes like

(-

3.16.3 Communication Parameters

Communicating scripts may have parameters. These pan@mete

in the formal parameter lists specifies its type. For instarec
communication with a send action and a receive action woald b
like:

script s(i:Int),r(i??) = {print(i)}

script testl
script test2
script test3

s(1) & j:Int receive(j?) {print(j)}
s(1) & receive(1l) A{print(1)}
s(1) & receive(2) {print(2)}

test1 andtest2 would result in a communicatiomgst3 would not,
since the forcing parameter value handed toes not match the
input parameter value handedsto

3.16.4 Communication over Channels

There is a more convenient notation for common send andvescei
pairs, so that parameter lists need not be copied. Firgbt sames
may end in arrow symbols, denoting send and receive acti@rso
channel. There need not be a name part before the arrowsacgeco
there is a short hand notation for such send/receive paihsagiial
channel names and almost equal parameter lists. The séodsact
should have input parameters, and the receive actionscshauk
either output or constrained parameters. E.g.,

a<-(i:Int), a->(i?) a<-->(i:Int?)

b<-(i:Int), b->(i?7?) b<-->(i:Int??)
c<-(i:Int),.c—>(i7?) c<-.->(i:Int?)
<=(i:Int),..->(i77) <-..->(1:Int?7)

Calls to the send and receive actions could be like

script testl =
script test2
script test3
script test4

a<-(1) & var j:Int a->(j?)
b<-(1) & b->(1)
c<-(1) & c—>(2)
<-(1) & ->(2)

3.16.5 Communication over networks

Communication may be restricted to a network topology ddfine
by the<==> operator. Then specify thick arrows, as in

a<=(i:Int), a=>(i?) a<==>(i:Int?)

For such communication, an additional restriction applies
should conform a network topology, built at a higher levahgs
variations of the network operater<==>>; this network should
also be defined in scripts belonging to the same object os clas
instance as the prospective send and receive actions.

Send actions and receive actions are normally bound to the
nearest by networking operator above them. However, sosigodf
actions may "fall through”, upwards. For instance:

<=(1) ==>

(var i: Int =>(i?) <=i ==> var j:Int =>(j7)

The receive actior=> (:7) cannot possibly communicate in the
inner pipe operator==> (since that allows only for sending from
left to right); therefore the receive action reaches towahe outer
pipe operator, where it may communicate with= (1). The sub-
sequent send action= (i) may communicate over the inner pipe,
so it will likely communicate with => (;j7)".

3.16.6 Asynchronous Communication

To do an asynchronous send over a channel, just launch it as a
process using the unary prefix operator *:

*a<-(1)
An equivalent notation for a channel is:

may be shared; only the first occurrence of shared parameters a<-*(1)

2011/12/27

For an asynchronous send over a network channel, only tte lat
way will yield good results. The reason is that normally geses
are launched to a too high level, directly under the top ofcié
hierarchy. If a launched network send action would not besub
dinate the aimed network operator, it cannot fulfill the nating
constraint. By using the form <= %(1), the send action would
be launched as a direct subordinate of the nearest netwerkatop
ancestor.

3.16.7 Linda Style Communication

The next two variations for receiving over channels had hieen
spired by the Linda model for tuple spaces. Sometimes it neay b
useful to do a non-blocking receive:

a->7(2)
var i:Int ->7(i?)

Such phrases would behave likan case no applicable send partner
is available. Sincé is a blocking operand, either the description
"non-blocking” receive may need to be changed here), siould
be replaced by.

Also it may be at times be useful to do a non-consuming receive

a—->%(2)
var i:Int ->*(i?)

Such receive actions would leave the corresponding seridnact
available for yet another communication. A combinationhaf two
would be a non-blocking non-consuming receive:

a->7%(2)
var i:Int ->7%(i?)

3.17 Exception handling

A try-catch-finally construct is available, much like theeom
Scala. The main differences are that the try and catch pantsic
script expressions, rather than Scala code. Also, the tatctiiers
normally disrupt the try part. This is important, since aotkn
exception does not automatically kill the try part, as it vabin
Scala code.

Suppose an exception would be thrown somewhere inside the
scriptain

try (a & b) catch (e: Exception => {println(e)})

Thenb would be disrupted, as well as a possibly still active part of
a. In case the catch handler should not disrupt the try paegi§p
using+ => that it will act as if it launches a process that will be
directly subordinate to the try-catch construct:

try (a & b) catch (e: Exception *=> {println(e)})
throw anFException may also be used as an operand of a script
operator, just as in Scala code
3.18 Syntactic sugar
With some syntactic sugar SubScript programs may beconre eve
more concise, and lots of braces and parentheses may bedlitch
3.18.1 script.. Sections

Often classes will contain sequences of multiple scripte Te-
peated wordscript can be factored out: start a "scripts” section as
in

script..
a = {println("hello")}
b = {println("world")}

Some rules to make this work:

e The indent level for each of the defined scripts should beetarg
than the one of the leading phrase-#ipt..".

e The indent level for the script body should be larger than the
indent level of the script name.

e All script names in such a section should start at the sanemind
level.

Similar sections could be allowed for regular Scala comgstu
classes, variables, values and methods. From here on ipapés,
we will also leave the phraseript.. when it suits.

3.18.2 Omitting Braces

Braces may be omitted for normal code fragments that merely
consist of a method call with a simple instance access patptfe
or only identifiers andhis). So both the following scripts are valid:

a = println("hello")

3.18.3 Omitting Parameter List Parentheses

We may leave out the parentheses of a parameter list if eaaimpa
eter is either a literal or a simple access path. Only a conged$
then to be added as a separator after the script name (or dnetho
name):

a = println,"hello"
3.18.4 Omitting Names of Implicit Scripts

We may leave out the names of implicit scripts, so that calllbe
resolved based on actual parameter lists:

implicit _println(sl: String, s2: String)
{println(si+" "+s2)}
"hello", "world"

a

3.18.5 Local Value Declarations in Calls

A sequence of a value declaration and a call that initialthes
value in the position of an output parameter, may be replagea
call that also does the declaration. So consider these gudisees
with their shorthand notations:

val i:Int r(i?) r(i:Int?)

val i:Int r,i? r,i:Int?

val n:Int n? n:Int?

val n:Int n?if (n<10) n:Int?if (n<10)
val n,m:Int n?,m? n:Int?,m:Int?

3.18.6 Prefix Notation

To avoid irritating and error prone repetitions of n-ary @ers,
a prefix notation is allowed. So the following specificaticare
equivalent:

WM M I Myl Mgyt
n_n [LRed LIRS [FOY TR oy}

unaryOperator
unaryOperator =+ "!"

This latter line is part of the SubScript syntax definitiohatt is
written in SubScript itself; see the appendix. Two otheesuh that
definition have a choice between sequences. It is possitiiave
the these alternatives on separate lines, while each linetee a
sequence. For that purpose, the equals symbol must imrabdiat
be followed by the semicolon and a plus symbol. The first symbo
refers to the white space within a line, and the second rédetise
white space between lines (which now binds a bit softer):

simpleTerm =;+ simpleValuelLedTerm + specialTerm
throwTerm + whileTerm + forTerm
codeFragment
"(" scriptExpression ")"

arrow . actualParameters

2011/12/27

4. Example: A Simple GUI Application

Suppose we need a simple program to look up items in a database
based on a search string.

The user can enter a search string in the text field and thes pre
the Go button. This will at first put a "Searching” messagehia t
text area at the lower part. Then the actual search will biepeed
at a database, which may take a few seconds. Finally thetsesul
from the database are shown in the text area.

In SubScript you can program that in an intuitively clear way

live = searchSequence. ..

searchSequence = searchCommand showSearchingText
searchInDatabase showSearchResults

searchCommand = searchButton

showSearchingText = Qgui: {outputTA.text = ...}

showSearchResults = @gui: {outputTA.text = ...}

searchInDatabase = {* Thread.sleep(3000) *}

Here searchCommand represents the event of the user pressing
the button. It silently uses an implicit script naméétked that gets
the search Button as a parameter. Thigicked script "happens”
when the user presses the search button. It is defined iritg abilt
ject subscript.swing.Scripts. As a bonus, the script makes sure
the button is exactly enabled when applicable. It will auatioally
be disabled as long agarchInDatabase is going on.

showSearchingText and showSearchResults each write
something in the text area., which is represented by theiari
namedoutputT A. An annotation makes sure this happen in the
GUI thread, as needed.

searchInDatabase represents a lasting database search. This
is simulated by a short sleep, but still in a background tthrea
that the GUI will not be harmed during the sleep.

If you would to program this functionality in plain Scalagth
resulting code will be much more complex, like:

val searchButton = new Button("Go") {
reactions.+= {
case ButtonClicked(b) =>
enabled = false
outputTA.text "Starting search..."
new Thread(new Runnable {
def run() {
Thread.sleep(3000)
SwingUtilities.invokeLater (new Runnableq{
def run() {outputTA.text="Search ready"

enabled = true

1))
}}) .start
}
}

4.1 Extending the program

It is easy to extend the functionality of this program. Fatamce,
the search action may also be triggered by the user predsing t
Enter key in the search text fielddarchT F'). Another user com-
mand could be to cancel an ongoing search in the databaseni$or
the user could press a Cancel button, or press the EscapEikey.
nally the user may want to exit the application by pressing sih
button, or by clicking in the close box at the window’s uppight
corner. But exiting should be confirmed in a dialog box. Arr&xt

prerequisite for enabling theearchCommand button would be
that the input text field is not empty. For this purpose we oul

insert an active guard just before the calktaurchCommand.

searchCommand = searchButton + Key.Enter
cancelCommand = cancelButton + Key.Escape
exitCommand = exitButton + windowClosing
exit = exitCommand@gui:while(!confirmExit)
cancelSearch = cancelCommand@gui:showCanceledText
searchSequence = guard(searchTF,
()=>!searchTF.text.isEmpty) ;
searchCommand ;
searchAction / cancelSearch
searchAction = showSearchingText
searchInDatabase
showSearchResults
live = searchSequence... || exit

windowClosing is a predefined event handling scriftey. Enter
and Key.Escape cause calls to the implicit scriptcey.

The or-parallelism in théive script makes both its operands
happen; the left hand side is an eternal loop, but the righd Isade
(exit) may terminates successfully, and then the parallel compos
tion also terminates successfully.

guard is a predefined and rather sophisticated script; it repeat-
edly evaluates a given test expression and waits for an eemt
given component. When the test succeeds, the loop may end:

guard(comp: Component, test: => Boolean) =
if (test). anyEvent (comp)

4.2 Progress Monitoring

It is easy to add a process monitor, that adds a sequentidberum
to the output text area, 4 times per second as long as theadatab
search is ongoing. Redefine the sctiptirchInDatabase:

searchInDatabase = {* Thread.sleep(3000)*}
|| progressMonitor
progressMonitor = {*Thread.sleep(250)*}

@gui:{searchTF.text+=here.pass}
here.pass returns a loop counter of the sequencgiingressMonitor.

5. Example: The Sieve of Eratosthenes

The Sieve of Eratosthenes is an algorithm to compute prime nu
bers, named after a Greek who invented it thousands of ygars a
Informally, the algorithm starts with the first prime numbrFrom

the natural numbers, up to a maximum value for practicalaress

it wipes out all multiples of this prime. The next remainingnmber

in the list, 3 must then also be prime. Now all multiples of 8 ar
erased. This way prime numbers are discovered one by one, and
each acts as a sieve to find more primes.

It is fun to program this using tiny sieves as processes that r
in parallel, at least conceptually. Think of a pipeline wétlsimple
number generator, a list of sieves and a printer. There isva $or
each recognized prime number; sieve 2 filters out all matmf
2, etc. After 3 tiny sieves have been generated, the prosesadd

2011/12/27

be like:

object Eratosthenes {
val toPrint new NetworkConnection

public script..

main(args:Array[String])

generator(2,1000000) ==> (..==>sieve)
=={toPrint}==> printer

generator(s:Int,e:Int) = for(i<-s to e) <=i

sieve = =>p:Int? Q@toPrint:<=p;

..=>i:Int? if (i%p!=0) <=i
printer = ..=>i:Int? println,i
<==>(i:Int) = {}

}

Messages... - AA events - exclude, suspend - tree buildup/ma
agement - activate, success, resume, deactivate - cotmbinsia
communication establishment - asynchronous AA result liagnd
AA execution - AA relocation

8. Implementation

- data structures for graphs - DSL to build these up advastage
easy to develop & install; free language features; relatineple
changes to compiler needed - messages - thd: suspend/resume
communication 2000 lines of code; table

The generator script generates numbers and sends these over theg. Conclusion

network. printer receives numbers and prints those. Both scripts
are quite generic and reusable; in principle they may be thtvea
trait.

Note that the first number that each sieve receives is its own
prime, and it must be forwarded to the printer. Inmediatdly a
ter this reception, the next sieve is created; this is thecefbf
the optional exit in combination with the parallel loop oé&s
(.. ==> sieve). Subsequent numbers are forwarded to the next
sieve in the chain.

The pipe inmain towards the printer contains annotation
toPrint, which corresponds to the annotation inside Hieve
script.toPrint is an instance of clas¥ etworkConnection; the
implementation of this class will ensure that the sending pfime
by <= p will be redirected towards the printer. Without this provi-
sion, the prime would accidentally be forwarded to the braed
next sieve.

6. Parsing

Grammar descriptions may be very concise in SubScript.ddses
text parsing. For instance, you would specify the strucofra
sequence of comma separated values, and lines thereof, as:

csv
csvLines

= value..","
csv "\n"..

This would work together with implicit scripts for value astting
constants, that parse those. With parameters the restie gfarse
would be returned:

csv (r : List[T] ?)
csvlLines(rr: List[List[T]]17)

csv,r:List[T]? {!rr+=r!}

Comma separated values CSV List Disambiguation

Low level: expectations

GUI similarity: - process expressions record state; leatest
variables needed - expectations

7. Call Graph Semantics

Template trees Call graph
Semantics by - user defined operators - executers

10

value,v:T? {!r+=v!} ..

ACP addition plus some syntactic sugar enables: - Easy -event
driven - Concurrency and Parallelism - Grammar - Dataflowgito
- Actors - Timing

We see that searchCommand has been defined as an addition of
a button and a character. This is something new in progragirin
call it "Item Algebra”. Scala as base language - concisescthefi-
nitions); handy case classes and function types - simif@mitiens
with equals: good fit - inspiring syntactic sugar TBD: contelthe
implementation develop formalism for language definitionip
blocks

A. Syntax definition
A.1 Syntax ambiguities

The SubScript has been optimized for conciseness and nlinima
use of parentheses and braces. There result is a set of atigsigu
dealing with . if script.. abstract scripts vs = next line

non
>

||\nn .

B. Event handling scripts

C. Execution Manipulation

Using script annotations of the form @code:, the executfgaas

of a SubScript program may be manipulated, in cooperatigh wi
the script executer. Specific objects with names such asgim,
processor may be defined so that they would have the following
meanings when used in annotations:

2011/12/27

Annotation Meaning numKey(i: Int??) =

qui The Scala codeéhere must be ex- _i match (

ecuted in the GUI thread case ActualValueParameter (value) => if (i>=0 && i<=9)
dbWriteT hread The Scala codéhere must be ex- case ActualOutputParameter(_) => key,c: Char if(c
ecuted in the given database write case ActualConstrainedParameter(_,constraint) => key,
thread case ActualAdaptingParameter(_,formalParameter,constr
threadPool The Scala codéhere must be exe-

cuteld inathreadinthe giventhread References

poo

processor All Scala codethere and below
must be executed at the given pro-
cessor

lowPriority The threaded Scala codgiere
should run at a low priority
lowActionPriority The atomic actionghere and be-
low have a low priority

key.typed The event handling cod&iere is
be executed in response to key
typed events

topology The topology for the network
there

parentN etwork The send or receive cathere is
directed to the network one level
up

parent Pipe The send or receive cathere is
directed to the pipe one level up
disambiguate Operatorghere and below are dis-
ambiguated

markov The program parthere and below
is managed by a specific Markov
system

markovchance = .5 The atomic actiomhere has arela-
tive chance to succeed in the given
Markov system

[1] P. Q. Smith, and X. Y. Jones. ...reference text...

realtimer The program parthere and below
is managed by a specific realtime
engine

startTime = 1 pm The atomic actiorthere starts at 1
PM real time

duration = | The atomic actiorthere succeeds

2 seconds after 2 real time seconds from its
start

sim The program parthere and be-

low is managed by a specific timed
simulation engine

startTime = 1 pm The atomic actiorthere starts at 1
PM simulation time

duration = | The atomic actiorthere succeeds

2 seconds after 2 simulation time seconds

from its start

D. Formal and Actual Script Parameters

Overview of formal and actual parameter use

Formal declaration Formal type Actual call Value of p

p: P FormallnputParameter[P] expr ActualValueParameter (expr)

p: P? FormalOutputParameter[P] varExpr? ActualOutputParameter (varExpr, {=>varExpr=_)
p: P?? FormalConstrainedParameter[P] expr ActualValueParameter (expr, {=> expr=_)
varExpr? ActualOutputParameter (varExpr, {=>varExpr=_)

varExpr if(c)? ActualConstrainedParameter(expr, {=> expr=_}, {_=>c})

formalParam?? ActualAdaptingParameter(_formalParam)

formalParam if(c)?? ActualAdaptingParameter(_formalParam, {=>c})

'l To be updated from source code !!

Suppose a script key(c:Char??) reads a character from the keyboard. How to use this script in numKey(i: Int?7), tha

11 2011/12/27

