
Subscript: Extending Scala with the
Algebra of Communicating Processes

André van Delft
andre dot vandelft at gmail dot com

Abstract
Most programming languages offer relatively little or no support
for parallelism and non-determinism. Support would in particular
be very useful for specifying event handling and backgroundpro-
cessing in applications with graphical user interfaces, and for spec-
ifying grammars of input data. To improve the situation, program-
ming languages may be extended with constructs adopted fromthe
theory named Algebra of Communicating Processes. This has been
done in Subscript, which is a extension to Scala. Examples show
how Subscript is useful for programming GUI controllers in the
MVC paradigm.
Currently Subscript is implemented as a DSL, using a run-time li-
brary named the Subscript VM. This VM has been written in about
2000 lines of Scala code. It maintains a call graph, that grows and
shrinks as a Subscript program runs. The semantics of the language
is mainly determined in terms of the rules for this graph manipula-
tion. subscript VMs have some freedom in these rules, so thatthey
can specialize, e.g. for real time constraints, probabilities, timed
simulations and parallel processing.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

General Terms Languages, Theory

Keywords Process Algebra, Algebra of Communicating Pro-
cesses, parallel programming, non-determinism, GUI program-
ming, MVC Controller, simulation

1. Introduction
Our intellectual powers are rather geared to master static relations
and that our powers to visualize processes evolving in time are rel-
atively poorly developed. For that reason we should do (as wise
programmers aware of our limitations) our utmost to shorten the
conceptual gap between the static program and the dynamic pro-
cess, to make the correspondence between the program (spread out
in text space) and the process (spread out in time) as trivial as pos-
sible.
These wise words are from the famous paper Goto statement con-
sidered harmful that Edsger Dijkstra wrote in 1968. In thosedays
many programmers tended to use thegoto statement, which too

[Copyright notice will appear here once ’preprint’ option is removed.]

often obscured the control flow. The resulting programs werede-
scribed asspaghetti code . In the years after this paper, the use
of goto statements decreased, also by improving choice and iter-
ation constructs in programming languages. By 1980,structured
programming had become widely accepted.
But spaghetti code returned, although this was not immediately
recognized. Programs got graphical user interfaces, and program
behavior started to be driven by user generated events. At first, a
main event loop would handle these events. Programming such an
event loop was tedious, but the code was still understandable. As
the user interfaces became more advanced, the coding complexity
increased. For instance, time consuming tasks required special care
so that they would not block user input.
Around the year 2000 programming interactive applicationshad
become really hard. Spaghetti code was needed to handle all kinds
of input events; the screen needed to be updated in a specific thread,
and background threads had to keep the application responsive. As
a result, too many applications, even professional ones, freeze these
days the GUI time and again.
The main cause for the trouble is that the applied programming
languages offer inappropriate support for event-driven and parallel
programming. Event handling and multithreading are usually im-
plemented using dynamically created objects. Manipulating these
data items largely determines the flow of control. This is much less
clear than the use of explicit control flow constructs, that program-
ming languages offer for concepts such as choice and iteration.
This paper presents Subscript: a Scala extension with such con-
structs, taken from the Algebra of Communicating Processes.

2. The Algebra of Communicating Processes
The Algebra of Communicating Processes (ACP)[2] an algebraic
approach to reasoning about concurrent systems. It is a member of
the family of mathematical theories of concurrency known aspro-
cess algebras or process calculi.1 More so than the other seminal
process calculi (CCS and CSP), the development of ACP focused
on the algebra of processes, and sought to create an abstract, gener-
alized axiomatic system for processes and in fact the term process
algebra was coined during the research that led to ACP.
ACP uses instantaneous, atomic actions (a,b,c,...) as its main prim-
itives. Two special primitives are the deadlock processδ and the
empty processǫ. The primitives may be combined to form pro-
cesses using a variety of operators. These operators can be roughly
categorized as providing a basic process algebra, concurrency, and
communication:

• Choice and sequencing the most fundamental of algebraic
operators are the alternative operator ( + ), which providesa
choice between actions, and the sequencing operator (· ), which

1 This description of ACP has been based on its item in Wikipedia

1 2011/12/27



specifies an ordering on actions. So, for example, the process
(a+b)·c first chooses to perform either a or b, and then performs
action c. How the choice between a and b is made does not
matter and is left unspecified. Note that alternative composition
is commutative but sequential composition is not (because time
flows forward).

• Concurrency to allow the description of concurrency, ACP pro-
vides a merge operator,‖. This represents the parallel composi-
tion of two processes, the individual actions of which are inter-
leaved. As an example, the process(a ·b) ‖ (c ·d) may perform
the actions a, b, c, d in any of the sequences abcd, acbd, acdb,
cabd, cadb, cdab.

• Communication pairs of atomic actions may be defined as com-
municating actions; they can then not be performed on their
own, but only together, when active in two parallel processes.
This way, the two processes synchronize, and they may ex-
change data.

ACP fundamentally adopts an axiomatic, algebraic approachto
the formal definition of its various operators. Using the alternative
and sequential composition operators, ACP defines a basic process
algebra which satisfies the following axioms:

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ x = x

(x+ y) · z = x · z + y · z

(x · y) · z = x · (y · z)

The special primitivesδ and ǫ behave much like the 0 and 1
that are neutral elements for addition and multiplication in usual
algebra:

δ + x = x

δ · x = δ

ǫ · x = x

x · ǫ = x

There is no axiom forx · δ. It just means: x and then deadlock.
x+ ǫ means:optionally x. This is illustrated by rewriting(x+ ǫ) ·y
using the given axioms:

(x+ ǫ) · y = x · y + ǫ · y

= x · y + y

The parallel merge operator‖ is defined in terms of the alter-
native and sequential composition operators. This definition also
requires two auxiliary operators:

x ‖ y = xTy + yTx+ x|y

xTy - ”left-merge”: x starts with an action, and then the rest of x
is done in parallel with y.x|y - ”communication merge”: x and y
start with a communication (as a pair of atomic actions), andthen
the rest of x is done in parallel with the rest of y.

The other defining axioms for the parallel merge are quite tech-
nical, and they are not replicated here.

A different way to define the operators is by means of a tech-
nique called Structural Operational Semantics. However, for de-
scribing the semantics of SubScript it seems to be less applicable.

In 1990, Henk Goeman unified Lambda Calculus with process
expressions, but that work has remained largely unknown. Shortly
thereafter, Robin Milner started Pi-calculus, which also combines
the two theories.

Many extensions to ACP have been developed, e.g. interrupt and
disrupt operators, and notions of time and priorities.

Since its inception in 1982, ACP has successfully been applied
to the specification and verification of among others, communica-
tion protocols, traffic systems and manufacturing plants.

3. From ACP and Scala to SubScript
It is well possible to add ACP-like expressions to imperative pro-
gramming languages. This has for instance been done in Scriptic,
a sequence of extensions to C, C++ and Java. Subscript is a follow
up, extending Scala while staying closer to ACP. However, there
are still many small and big differences between ACP and the Sub-
Script extension.

To describe the Subscript language constructs, various more or
less vague phrases are used rather loosely below, such as: ”activa-
tion”, ”happen”, ”success”, ”failure”, ”suspend”, ”resume”, ”pro-
cess”, ”parent”, and ”ancestor”. These relate to a ”Call Graph”
model for executing SubScript programs. A call graph is an acyclic
directed graph; it grows downwards by activating nodes in accor-
dance to the static parse trees of called scripts. Process operators
will be represented by parent nodes; atomic actions by leavenodes.

Inside this call graph, several kinds of messages are sent along
the edges. E.g. when an atomic action starts, this is reported up-
wards in the call graph. If that report arrives from a certainchild
node at a node representing a ”+” operator, then that node sends
”exclude” messages to all its other children, so that any active
atomic actions in those branches will be deactivated.

After completion, an atomic action will report asuccess mes-
sage upwards; thereafter it deactivates. The same does anǫ-like
node. A sequence node that receives a success message from a child
node, will activate a next child, if applicable given the parse tree;
otherwise the sequence node will send a success messages to its
parent.

Section 7 discusses the call graph semantics in more detail.

3.1 Lexical differences

ACP specifications apply quite some mathematical symbols. For
a programming language, it is in principle desirable that all char-
acters are easy accessible on the keyboard. On the other handit
would as well be nice if SubScript would have some mathematical
look and feel, using symbols likeδ, ǫ andν for deadlock, an empty
process and a neutral process. Since these symbols are not easy to
type, predefined symbols (-), (+) and (+-) exist for these processes.
The variants with the Greek symbols are defined in a ’Predef’ ob-
ject.

ACP symbols for choice, sequence parallelism are +, ; and
&. As a courtesy to the ACP scientists, the multiplicative dot ·
is available for multiplication too in SubScript. Just likein Math
and ACP the operator symbol for multiplication (here denoting
sequence) may be left out. SubScript has a wider range of process
operator symbols; their operator precedences follow Scalarules,
except for the strongly binding·. The spacing without operator
binds stronger than·.

3.2 Scripts

SubScript adds ACP process expressions to Scala in a new kind
of class members, next to variables and methods: so called scripts.
These are much like methods, but they are refinements of process
expressions, rather than statement sequences. A script definition
starts with the wordscript rather thandef. The following script
is defined as a single atomic action, executing Scala code that prints
”Hello”:

script hello = {println("Hello")}

2 2011/12/27



Like methods, scripts may be implicit, abstract, or overriding.
The script parameters are a different from method parameters: each
script parameter is of kind input, output or constrained, whereas
method parameters are of kind input. Output parameters are marked
by a single question mark; constrained parameters have two ques-
tion marks, as in:

script read(i: Integer?)
script readForcable(i: Integer??)

The first script should be called with an actual output parameter,
as inread(j?). The second script may be called that way, but also
with a specific ”forcing” value, or with a less forcing constraint, as
in

readForcable(10)
readForcable(j? if(j<=10))

3.3 Native language interoperability

Scripts may contain Scala code in various flavors of code frag-
ments, in actual parameter lists of script calls, and in several other
constructs. Such Scala code may refer to a special value named
here, which refers to the ”current operand” of the active process
expression.here is much likethis, the current object. Through the
value ”here” various useful run-time features are accessible, such
as a state.here may also be used as an implicit value.

To call a script from Scala, it is useful to have a bridge method
that adds a so called Script executer as a parameter, and returns that
executer. The caller of the bridge method can query the returned
result about the state in which the script had ended: successor fail-
ure. Failure occurs when in ACP terms the script ends essentially
as the deadlock processδ:

def hello: ScriptExecuter = {
ScriptExecuter se=new BasicScriptExecuter
hello(se); se

}
def test = {println(

if (hello.succeeded) "OK" else "NOK"
)}

Such a bridge will also be generated using an annotation:

@BasicScriptExecuter
script hello = {println("Hello")}

A ”main(args: Array[String])” script in a declared object has such
an implicit annotation. This creates a bridge method that effectively
replaces the ”main” method of the object. For instance, the follow-
ing SubScript program would print ”Hello”:

object Hello {
script

main(args: Array[String]) = {println("Hello")}
}

Other executers than the BasicScriptExecuter may offer support
for specific application requirements, such as real time, simulation
time, randomization, and parallel processing.

3.4 N-Ary Operators

SubScript offers the main process operators of ACP, but withsome
syntactic and semantic differences. There are also many other oper-
ators in SubScript; some of these are very useful and intuitive; the
presence of more esoteric ones in the language specificationmay
be less justified. Fortunately these operators are all quitesimilar so
they do not impose a heavy syntax burden.

Still, a better option could be to have these as user defined op-
erators, more or less standardized in a library. But in that case, the
language definition should ensure that script executers canhandle

such operators. In order to learn such requirements, the esoteric
operators remain for the time being in the language definition.

3.4.1 Arity

The ACP operators for sequence, choice and parallelism are in
principle binary, but as they are associative, the operators may also
be considered to be n-ary. In SubScript they they are not associative
any more, and therefore they are defined as n-ary operators, not as
binary ones.

This non-associativity is caused by the existence of some special
types of operands, that turn expressions into iterations, or that break
away from an expression. For instance, consider the following two
specifications:

(..A)B - a sequence of one or more A’s, and finally B
..(AB) - a sequence of one or more sequences of A and B

Here the two dots denote an iteration and at the same time an
optional exit point.

3.4.2 Commutativity

Operators such as + that are commutative in ACP are even not
commutative in SubScript. When an expressionx+ y is activated,
then first the x part is activated and then the y part. The programmer
should know this activation order; it implies that evaluations (e.g.
for the conditionals in if-expressions) in x precede the ones in y.

In a sense commutativity still holds: when writing an expression
with the + operator, the programmer normally expresses the intent
that there is a choice of the atomic actions sequences between the
operands, and he does not care which operand will get priority.
It is up to the script executer to determine this prioritization; the
executer may even randomize.

3.4.3 Sequences

Having multiple ways of expressing sequences occasionallyal-
lows for smaller code, with less parentheses. We use the factthat
the semicolon binds weakly, whereas the ”space operator” binds
strongly. For instance, a sequence of A’s terminated by a B would
initially be

(..;A);B

or

(..A)B

The parentheses are not needed if we us just one semicolon:

..A;B

3.4.4 Parallelism

The ACP parallelism operator,‖, is a simple kind of ”and-parallelism”.
It succeeds when each of its operands succeeds. Other forms of
parallelism would occasionally be useful as well, such as simple
or-parallelism. SubScript supports both flavors of parallelism, with
symbols& and|. Analogous to boolean expressions in C and other
languages, SubScript has also stronger versions for and- and or-
parallelism, and even for ”equal-parallelism”:

& ”and parallelism” or ”normal parallelism”: succeeds
when each operand succeeds

| ”or parallelism”: the succeeds as soon as any operand
does so

&& ”strong and”: the whole ends as deadlock (δ) as soon
as one operand does so

|| ”strong or”: the whole ends successfully as soon as
any operand does so

== ”equal parallelism”: this succeeds like & when each
operand succeeds, but it also succeeds when each
operand has ended as deadlock

3 2011/12/27



The latter operator is only experimental, for the time being.
It makes the set of parallel operators logically more complete.
There is no ”not-equals-parallelism”, since that may be counterin-
tuitive for an n-ary operator. However, there are also experimental
unary negation operators which combined with== may accom-
plish ”not-equals-parallelism”.

3.4.5 Networks

Another special n-ary operator is<<==>>. This is much like
”normal” parallelism (using &), but it also describes a network that
restricts certain kinds of communication actions. These communi-
cation actions are either send or receive actions, and theirnames
should end in<= (for send) or=> (for receive). The<<==>>
defines a topology that interconnects every subset of operands (not
just every pair, since communication is n=-ary in general).

Variations of the network operator symbol may impose restric-
tions on the topology. The following variations are possible:

<== <<== ==> ==>> <==> <<==> <==>> <<==>>

If the arrow is only one-sided, then communication can only go in
that direction. A single arrow head (< or >) instead of a double
(<< or >>) denotes that communication can only be to the adja-
cent operand in the corresponding direction. E.g., in

p1<==p2<==>>p3<==>p4==>p5

process p2 may send to p1 and p3 and p4, etc.
==> corresponds with pipes in Unix shell languages.
Inside the network arrows, special annotations may be placed

between braces, that further control the topology. For instance,

=={myPipe}==>

would give this part of the network annotationmyPipe. A similar
annotation for a send action in the left operand of the arrow could
effectively restrict that action to this pipe. SubScript does not en-
force such behavior; it should be defined in the class ofmyPipe.

The network arrows may also be marked with value tuples, as
in <<== (i, j) ==>>. This can be picked up by a topology
controller that is specified using an annotation. E.g.,

@myTopology: (
for (i<-0 to m; j<-0 to n) <<=(i,j)=>> p(i,j)
)

myTopology could for instance impose a torus topology by allow-
ing only connections between ”adjacent” i,j pairs.

3.4.6 Left-merge Operators

For each parallel operator there is a left-merge version, with a
symbol equal to the original symbol with ”·” appended:

& · && · | · ||· == · <<==>> ·
The right-hand side only becomes active when an action at the

left hand side occurs for the first time. The ”·” postfix expresses
that there is sequential dependency.

3.4.7 Disrupt, Interrupt and other Suspend/Resume
Operators

ACP has an extension with ”modal transfer” operators for disrup-
tion and interruption. Subscript has similar operators:

/ disrupt: x/y means that x happens, possibly disrupted
by y

%/ interrupt: x%/y means that x happens with 1 interrup-
tion by y

The interrupt definition is different from the official one inACP.
The latter denotes optional interruption; it cannot model mandatory
interruption, which is an unnecessary limitation. In Subscript the

interruption is mandatory; it becomes effectively optional when the
right hand side is made optional.

The interrupt operator symbol has two characters, one of which
is %. It belongs to an experimental family of suspend/resumeoper-
ators, each starting with a % character in its symbol. Two of these
don’t have a neutral element:

x%&y x and y in any order. As soon as x starts, y is sus-
pended, and vice versa. As soon as x has success, y
is resumed, and vice versa. Similar, but not equal, to
xy + yx

x%;y first x and then y, with x and y both optional, but when
x does not happen, y must happen. Similar, but not
equal, tox(y + ǫ) + y

x%%y x and y in any order and both optional, but at least
one of the two must happen. Similar, but not equal, to
x(y + ǫ) + y(x+ ǫ)

x%/y x interrupted by y; x happens, but y as well; x is
suspended as soon as y starts to happen. When y is
(or may be) ready, x is (or may be) resumed

x%/%/y x sequentially interrupted zero or more times by y

3.4.8 Deadlock continuation operator

In normal sequences of the formx; y, y may start when x succeeds.
A dual kind of sequence isx!; y, meaning: y may start when
x ends in deadlock. This is useful for text parsers: as soon as
deadlock occurs because the input text does not match a specified
grammar, then the execution falls through this operator so that an
error message may be given.

3.5 Neutral elements

Most of the introduced n-ary operators have a neutral element,
which is in ACP terms eitherδ or ǫ. We will call these operators
or-like and and-like respectively.

Or-like + | || / %; %% !;
And-like ; & && %/ %&
Neither == %/%/

A special operand isν, named the neutral process. If this
operand belongs to an or-like operator, thenν behaves likeδ. For
and-like operators and in ”unclear” circumstances, the neutral pro-
cess behaves likeǫ.

The neutral process is implicit in the definition of if-expression
without an else-part, and also for operands such as iterators.

Since working with Greek symbols is at times problematic,
Subscript defines(−), (+) and (+−) for the deadlock, empty
process and neutral process. The Greek symbols are defined as
scripts in the subscript.Predef object.

3.6 Unary operators

There are some unary operators on expressions:
!x negation; ends in deadlock when x ends successfully,

and vice versa
-x strong negation; ends in deadlock when x ends suc-

cessfully, and vice versa. -x also succeeds when an
action in x happens without x succeeding

∼ x action tracing; succeeds when an action in x happens
*x process spawning. After activation, x executes in par-

allel with its parent process p, as if p had become
p&x. This parent process is by default the highest
level script that had been called from the base lan-
guage

**x marking of a anchor place for spawned processes
Spawned process starts to run in parallel to its nearest by parent

process as seen in the call hierarchy

4 2011/12/27



The latter two are not allowed by Scala rules on unary prefix
operators. This may turn out to be undesired; maybe another way
will be found to express launching and anchor places.

3.7 If-else, Match and Ternary Operator

Just like Scala, SubScript offers if-else and match constructs; the
difference being that operands such as the then part and elsepart,
are script expressions rather than pieces of regular Scala code.

if (b) x

behaves as if the else part is neutral, so it is shorthand for

if (b) x else (+-)

There is also a ternary operator, that has 3 processes as operands
x?y : z does x; when that has success, y may start happening.

In case x ends in deadlock, z starts. x? y: (-) behaves much like x;y.
A difference is that such a sequence cannot become an iteration. x?
(+): y behaves much like x!;y. Again it cannot become an iteration.
Binary usage is also allowed: x? y is shorthand for x? y: (+-).It is
a good means to express a either precondition or a postcondition.

3.8 Iterating and Breaking Operands

There are 6 operand for supporting iterations and breaking:
while marks a loop and an conditional mandatory break

point
for a for-comprehension, like while marking a loop and

a break point2

... marks a loop; no break point, at least not here
.. marks a loop, and at the same time an optional break

point
. an optional break point

break a mandatory break point
Note that these are operands; they often belong to a sequential

operator, but the iterations may as well be alternative or parallel.
The relation ”belongs to an n-ary operator” shines through unary
operators, script calls, if expressions, etc. An activatediterator
operands (while, for, ... and ..) acts on its n-ary operator as if the
operand list in its specification text is repeated an infinitenumber
of times.

while(b) behaves much likeif(b)...else break. For thefor
operand something similar holds. Whenbreak is activated the
related n-ary operator starts acting as if its specificationtext has
no more operands. This is another reason why commutativity is
strictly broken for ”+” and parallel operators.

.. behaves much like a combination of. and .... The optional
break lets its related n-ary operator optionally stop activating its
operands. What exactly happens depends on the kind of the se-
quential operator:

• A sequential operator will succeed and also activate the next
operand. E.g.x.y does x; thereafter it may stop or continue with
y. It behaves much likex; (+) + y, if we disregard the effects
of iterating and breaking operands in y.

• Most operators will on activation activate its operands from left
to right until a break is encountered. If the break is a hard break,
then no more operands are activated any more. If the break is a
soft break, then activation will continue after an atomic action
has started in one of the just activated operands.

Apart from these effects, all iterating and breaking operands behave
like the neutral process.

3.9 Local Variables and Values

Local variables and values are written down as in Scala usingthe
keywords var and val. A for comprehension may also imply a new
local value (not a variable).

• A variable should be a direct operand of a sequential operator

• A value should be a direct operand of any kind of n-ary operator.

Both variables and values can be used only in subsequent operands.

3.9.1 Looping Local Variables and Constants

A local variable or value may be initialized using a ”looping”
expression. E.g.,

val i=0...(i+1)

Like ”...”, such a declaration turns its related n-ary operator into an
iteration. The value i becomes 0 during the first iteration pass; in
subsequent passes it becomes the value of the previous pass.So the
following fragment has two iterators; it will print 0 to 9:

val i=0...(i+1) while(i<10) {println(i)}

A parallel variation will do the same; each parallel pass will get its
own copy of the value i:

val i=0...(i+1) & while(i<10) & {println(i)}

3.9.2 Private Local Variables

Sometimes different operands of an n-ary operator need their own
copy of a variable. Then a ”private” declaration would be useful.
For instance consider a variation of the previous example:

var i=0; while(i<10) & {println(i)} & {! i+=1 !}

This will print 10 times the number 10: the execution of all println
actions take place after all have been activated, and after each
activation the variablei is incremented. A ”private” declaration will
then ensure that each println action gets a private copy ofi.

var i=0;
while(i<10) & {!i+=1!} & private i: {println(i)}

This prints numbers 1 up to 10.

3.10 Code fragments

The atomic actions of ACP have their SubScript counterpartsin
code fragments. These are operands with pieces of Scala code,
enclosed in braces. However, it is often more accurate to saythat
the start and end of the code fragment execution are like ACP
atomic actions. This allows code fragments to model longer lasting
actions, such as code running in a separate thread, or code that
simulates to take a nonzero duration.

A special kind of code fragment does not behave like an atomic
action, but asδ or ǫ.

The Script Executer may determine the way code fragments are
executed. Examples of such executor types are:

• A discrete event simulation engine

• A probabilistic engine doing Monte Carlo execution

• A scheduler for parallel hardware

Code fragments are always enclosed in braces. Symbols next to
the braces denote different flavors:

5 2011/12/27



{ code} plain code fragment. Normally, no other actions
take place between the start and end of this
fragment. However, a simulation engine may
attribute a positive duration to this fragment, so
that other actions may come in between. The
same happens when an executor defers the code
asynchronously to the GUI thread

{* code *} threaded code fragment. This code fragment
normally runs in its own thread, but the script
executer may assign it to a thread pool

{? code ?} unsure code fragment. When executed, the code
fragment may not reflect a happening atomic
action, but insteadδ or ǫ. It may even get state
undetermined, meaning that it remains eligible
for another execution

{! code !} immediate code fragment. Executed immedi-
ately upon activation. This normally gets the
ACP meaning ofǫ, but that may be overridden
by the code to becomeδ or ν

{. code .} event handling code fragment; meant to be exe-
cuted by an installed event handler, e.g. for han-
dling keyboard or mouse input. Normally it be-
comes an atomic action shortly after the code
execution, but the code may set it to behave like
? or undetermined

{... code ...} looping event handling code fragment. The
code may also trigger an optional break from
the loop or a mandatory break, as by calling
here.optionalBreak andhere.break

3.11 Script calls

Script calls are operands that may look like method calls, but they
have extra support for output parameters and matching constraints.
Output parameters are neither present in ACP refinements, nor in
Scala methods.

3.11.1 Output Parameters

Refinements in ACP may have value parameters. This leads to spec-
ifications with mathematical Sigma symbols, standing for parame-
terized addition. For instance, suppose a number i between 0and
9 is read from a channel, depicted by r(i); then some action a(i) is
performed. In ACP this would typically be written down like

ra =
9∑

i=0

r(i) · a(i)

Programmers would be much more familiar with a solution that
would not require a sigma. SubScript therefore offers output pa-
rameters. For instance, a script definition could start with

r(i: Int?) = {i=computed}

The question mark suffix denotes that parameter i is an output
parameter. Then the following call would be allowed:

var i: Int r(i?) a(i)

3.12 Constrained Parameters

The previous definition of the r script allows it to yield any number
of type Integer. We may want to restrict the received values to the
range 0..9, as in the ACP example. This would be possible if the
parameter i in the script definition gets a double question mark
suffix:

script r(i: Int??) = {i=computed}

This makes the parameteri a constrained output parameter. The
caller of such a script may specify a normal output parameter, but

it may also add some constraints. This is done Scala style using the
keywordif , as in

var i: Int r(i? if(i>=0&&i<=9)) a(i)

Such a single-parameter constraint condition is evaluatedwith the
formal value of the corresponding parameter of the called script.
Only when script call succeeds are formal parameter values copied
onto the actual output parameters.

Normally the definition of scriptr should ensure that its atomic
actions may only happen if the constraints evaluate to true.This is
possible for instance using:

script r(i: Integer??)
= {? i=computed; if (!(_i.matches) here.fail ?}

So a parameteri may be referred to byi; this returns an object
that has a method namedmatches. Other available features are
value, originalV alue, andkind (which returns the kind of the
corresponding actual parameter).

A convenience method doing the same check for all parameters
in one go, is

script r(i: Int??)
= {? i=computed; here.matchParameters ?}

3.13 Forcing Parameters

A special kind of constraint is calling the script with a value pa-
rameter without a question mark suffix. Such a parameter is called
a forcing parameter:

r(1)

3.14 Adapting Parameters

Formal constrained parameters may be transparently passedthrough
script calls, by having the parameter list enclosed in parentheses:

script rr(i: Int??) = r(i??)

Optionally a postfix test may be added, as in:

script rr(i: Int??) = r(i?? if(i%2==0))

In both callsi is said to be an ”adapting parameter”. Inside script
r, accessingi has the same effects as insiderr

3.15 Annotations

Annotations in SubScript are a bit different from the ones inScala.
They start with ”@”, but then they contain some code instead of
a class name, and they are terminated by a colon, as in@code :
term.

The annotation code executes when its operand is about to
become activated. There is often a need to refer to that operand in
the code. That is done using the the fieldhere.there. That has also
an implicit shorthand value:there, which is also implicit, instead
of here.

Annotation code may install handlers with code that be called
on occasions of activation, deactivation, suspension and resump-
tion. For instance, an annotation may install such handlersas in:

@code1
there.onActivateOrResume {code2}
there.onDeactivate {code3}
there.onDeactivateOrSuspend{code4}:

3.16 Communication

In ACP atoms a, b, c denote normally atomic actions, but they
may alternatively be partners of pairs of communicating actions.
For instance, it may be defined that atoms a, b and c communicate
in the possible pairs (a,b) and (a,c), yielding some atomic actions d

6 2011/12/27



and e. At the top level of an ACP program, single occurrences of a,
b and c are hidden so that these can not be mistaken as autonomous
atomic actions.

In SubScript, no such hiding is needed, as it has special kinds of
communicating scripts that will not act on their own. For instance,

script a,b = {println("hello")}

Whena andb have been activated in parallel to one another, their
shared action that probably prints ”hello” may happen. In case only
a is active, no action would follow; the activea would just have to
wait for a partnerb; maybe it will be deactivated before that would
happen.

In casea may also communicate with a partnerc, SubScript
prescribes that these alternatives are marked, by writing+ =
instead of= in the definition.

script a,b += {println("hello")}
script a,c += {println("world")}

This is a bit similar to marking overridden methods in Scala with
the keyword ”override”.

3.16.1 Multiple Communication Partners

Unlike in standard ACP, SubScript communication may involve
more than 2 partners:

script a,b,c = {println("hello")}

A normal script may be regarded as an efficient kind of communi-
cation, involving only 1 partner. It is possible to express that a can
act on its own, but also as a partner in a communication:

script a += {println("hello")}
script a,b += {println("world")}

In case both an eligiblea and b have become active, it is up to
the script executer to decide what communication (a vs a, b) gets
precedence.

Even any number of partners with a given name and signature
may be allowed to communicate:

script a.. = {println("hello")}
script b,c.. = {println("world")}

So 1 or more calls to a could together do ”hello”, and 1 call to b
and 1 or more calls to c could together do ”world”. Unless speci-
fied otherwise, a script executer execution must bind a maximum
number of partners. That is, a set of partners is allowed if itcannot
be extended any more with other active calls.

3.16.2 Communication Body

The body of a communication in ACP may be a normal atomic
action, but also an atom that wants to communicate in turn. In
SubScript, any kind of script expression is allowed as the body of
the communication.

script a,b = {println("hello")} {println("world")}

Normally a communication body should be built up from atomic
actions. Syntacticly it is possible to abuse the freedom, such as in:

script a,b = ..
script c,d = (+-)

Such definitions are not recommended, but their behaviour isde-
fined. For instance, (+-) behaves like (-) if each of the communica-
tion partners belongs to an or-like operator; else the it behaves like
(+).

3.16.3 Communication Parameters

Communicating scripts may have parameters. These parameters
may be shared; only the first occurrence of shared parameters

in the formal parameter lists specifies its type. For instance, a
communication with a send action and a receive action would be
like:

script s(i:Int),r(i??) = {print(i)}

script test1 = s(1) & j:Int receive(j?) {print(j)}
script test2 = s(1) & receive(1) {print(1)}
script test3 = s(1) & receive(2) {print(2)}

test1 andtest2 would result in a communication;test3 would not,
since the forcing parameter value handed tor does not match the
input parameter value handed tos.

3.16.4 Communication over Channels

There is a more convenient notation for common send and receive
pairs, so that parameter lists need not be copied. First, script names
may end in arrow symbols, denoting send and receive actions over a
channel. There need not be a name part before the arrows. Second,
there is a short hand notation for such send/receive pairs with equal
channel names and almost equal parameter lists. The send actions
should have input parameters, and the receive actions should have
either output or constrained parameters. E.g.,

a<-(i:Int), a->(i?) a<-->(i:Int?)
b<-(i:Int), b->(i??) b<-->(i:Int??)
c<-(i:Int),.c->(i?) c<-.->(i:Int?)
<-(i:Int),..->(i??) <-..->(i:Int??)

Calls to the send and receive actions could be like

script test1 = a<-(1) & var j:Int a->(j?)
script test2 = b<-(1) & b->(1)
script test3 = c<-(1) & c->(2)
script test4 = <-(1) & ->(2)

3.16.5 Communication over networks

Communication may be restricted to a network topology defined
by the<==> operator. Then specify thick arrows, as in

a<=(i:Int), a=>(i?) a<==>(i:Int?)

For such communication, an additional restriction applies: it
should conform a network topology, built at a higher level using
variations of the network operator<<==>>; this network should
also be defined in scripts belonging to the same object or class
instance as the prospective send and receive actions.

Send actions and receive actions are normally bound to the
nearest by networking operator above them. However, some ofsuch
actions may ”fall through”, upwards. For instance:

<=(1) ==>
(var i: Int =>(i?) <=i ==> var j:Int =>(j?)

The receive action=> (i?) cannot possibly communicate in the
inner pipe operator==> (since that allows only for sending from
left to right); therefore the receive action reaches towards the outer
pipe operator, where it may communicate with<= (1). The sub-
sequent send action<= (i) may communicate over the inner pipe,
so it will likely communicate with ”=> (j?)”.

3.16.6 Asynchronous Communication

To do an asynchronous send over a channel, just launch it as a
process using the unary prefix operator *:

*a<-(1)

An equivalent notation for a channel is:

a<-*(1)

7 2011/12/27



For an asynchronous send over a network channel, only the latter
way will yield good results. The reason is that normally processes
are launched to a too high level, directly under the top of thecall
hierarchy. If a launched network send action would not be subor-
dinate the aimed network operator, it cannot fulfill the networking
constraint. By using the forma <= ∗(1), the send action would
be launched as a direct subordinate of the nearest network operator
ancestor.

3.16.7 Linda Style Communication

The next two variations for receiving over channels had beenin-
spired by the Linda model for tuple spaces. Sometimes it may be
useful to do a non-blocking receive:

a->?(2)
var i:Int ->?(i?)

Such phrases would behave likeδ in case no applicable send partner
is available. Sinceδ is a blocking operand, either the description
”non-blocking” receive may need to be changed here, orδ should
be replaced byǫ.

Also it may be at times be useful to do a non-consuming receive:

a->*(2)
var i:Int ->*(i?)

Such receive actions would leave the corresponding send action
available for yet another communication. A combination of the two
would be a non-blocking non-consuming receive:

a->?*(2)
var i:Int ->?*(i?)

3.17 Exception handling

A try-catch-finally construct is available, much like the one in
Scala. The main differences are that the try and catch parts contain
script expressions, rather than Scala code. Also, the catchhandlers
normally disrupt the try part. This is important, since a thrown
exception does not automatically kill the try part, as it would in
Scala code.

Suppose an exception would be thrown somewhere inside the
script a in

try ( a & b ) catch (e: Exception => {println(e)})

Thenb would be disrupted, as well as a possibly still active part of
a. In case the catch handler should not disrupt the try part, specify
using∗ => that it will act as if it launches a process that will be
directly subordinate to the try-catch construct:

try ( a & b ) catch (e: Exception *=> {println(e)})

throw anException may also be used as an operand of a script
operator, just as in Scala code

3.18 Syntactic sugar

With some syntactic sugar SubScript programs may become even
more concise, and lots of braces and parentheses may be ditched.

3.18.1 script.. Sections

Often classes will contain sequences of multiple scripts. The re-
peated wordscript can be factored out: start a ”scripts” section as
in

script..
a = {println("hello")}
b = {println("world")}

Some rules to make this work:

• The indent level for each of the defined scripts should be larger
than the one of the leading phrase ”script..”.

• The indent level for the script body should be larger than the
indent level of the script name.

• All script names in such a section should start at the same indent
level.

Similar sections could be allowed for regular Scala constructs:
classes, variables, values and methods. From here on in thispaper,
we will also leave the phrasescript.. when it suits.

3.18.2 Omitting Braces

Braces may be omitted for normal code fragments that merely
consist of a method call with a simple instance access path (empty
or only identifiers andthis). So both the following scripts are valid:

a = println("hello")

3.18.3 Omitting Parameter List Parentheses

We may leave out the parentheses of a parameter list if each param-
eter is either a literal or a simple access path. Only a comma needs
then to be added as a separator after the script name (or method
name):

a = println,"hello"

3.18.4 Omitting Names of Implicit Scripts

We may leave out the names of implicit scripts, so that calls will be
resolved based on actual parameter lists:

implicit _println(s1: String, s2: String)
= {println(s1+" "+s2)}

a = "hello", "world"

3.18.5 Local Value Declarations in Calls

A sequence of a value declaration and a call that initializesthat
value in the position of an output parameter, may be replacedby a
call that also does the declaration. So consider these subsequences
with their shorthand notations:

val i:Int r(i?) r(i:Int?)
val i:Int r,i? r,i:Int?
val n:Int n? n:Int?
val n:Int n?if(n<10) n:Int?if(n<10)
val n,m:Int n?,m? n:Int?,m:Int?

3.18.6 Prefix Notation

To avoid irritating and error prone repetitions of n-ary operators,
a prefix notation is allowed. So the following specificationsare
equivalent:

unaryOperator = "!" + "-" + "~" + "*" + "**"
unaryOperator =+ "!" "-" "~" + "*" + "**"

This latter line is part of the SubScript syntax definition, that is
written in SubScript itself; see the appendix. Two other rules in that
definition have a choice between sequences. It is possible tohave
the these alternatives on separate lines, while each line denotes a
sequence. For that purpose, the equals symbol must immediately
be followed by the semicolon and a plus symbol. The first symbol
refers to the white space within a line, and the second refersto the
white space between lines (which now binds a bit softer):

simpleTerm =;+ simpleValueLedTerm + specialTerm
throwTerm + whileTerm + forTerm
codeFragment
"(" scriptExpression ")"
arrow . actualParameters

8 2011/12/27



4. Example: A Simple GUI Application
Suppose we need a simple program to look up items in a database,
based on a search string.

The user can enter a search string in the text field and then press
the Go button. This will at first put a ”Searching” message in the
text area at the lower part. Then the actual search will be performed
at a database, which may take a few seconds. Finally the results
from the database are shown in the text area.

In SubScript you can program that in an intuitively clear way:

live = searchSequence...
searchSequence = searchCommand showSearchingText

searchInDatabase showSearchResults

searchCommand = searchButton
showSearchingText = @gui: {outputTA.text = ...}
showSearchResults = @gui: {outputTA.text = ...}
searchInDatabase = {* Thread.sleep(3000) *}

HeresearchCommand represents the event of the user pressing
the button. It silently uses an implicit script namedclicked that gets
thesearchButton as a parameter. Thisclicked script ”happens”
when the user presses the search button. It is defined in a utility ob-
ject subscript.swing.Scripts. As a bonus, the script makes sure
the button is exactly enabled when applicable. It will automatically
be disabled as long assearchInDatabase is going on.

showSearchingText and showSearchResults each write
something in the text area., which is represented by the variable
namedoutputTA. An annotation makes sure this happen in the
GUI thread, as needed.

searchInDatabase represents a lasting database search. This
is simulated by a short sleep, but still in a background thread, so
that the GUI will not be harmed during the sleep.

If you would to program this functionality in plain Scala, the
resulting code will be much more complex, like:

val searchButton = new Button("Go") {
reactions.+= {
case ButtonClicked(b) =>

enabled = false
outputTA.text = "Starting search..."
new Thread(new Runnable {
def run() {
Thread.sleep(3000)
SwingUtilities.invokeLater(new Runnable{

def run() {outputTA.text="Search ready"
enabled = true

}})
}}).start

}
}

4.1 Extending the program

It is easy to extend the functionality of this program. For instance,
the search action may also be triggered by the user pressing the
Enter key in the search text field (searchTF ). Another user com-
mand could be to cancel an ongoing search in the database. Forthis
the user could press a Cancel button, or press the Escape key.Fi-
nally the user may want to exit the application by pressing anExit
button, or by clicking in the close box at the window’s upper right
corner. But exiting should be confirmed in a dialog box. An extra

prerequisite for enabling thesearchCommand button would be
that the input text field is not empty. For this purpose we would
insert an active guard just before the call tosearchCommand.

searchCommand = searchButton + Key.Enter
cancelCommand = cancelButton + Key.Escape
exitCommand = exitButton + windowClosing
exit = exitCommand@gui:while(!confirmExit)
cancelSearch = cancelCommand@gui:showCanceledText

searchSequence = guard(searchTF,
()=>!searchTF.text.isEmpty);

searchCommand;
searchAction / cancelSearch

searchAction = showSearchingText
searchInDatabase
showSearchResults

live = searchSequence... || exit

windowClosing is a predefined event handling script.Key.Enter
andKey.Escape cause calls to the implicit scriptvkey.

The or-parallelism in thelive script makes both its operands
happen; the left hand side is an eternal loop, but the right hand side
(exit) may terminates successfully, and then the parallel composi-
tion also terminates successfully.

guard is a predefined and rather sophisticated script; it repeat-
edly evaluates a given test expression and waits for an eventat a
given component. When the test succeeds, the loop may end:

guard(comp: Component, test: => Boolean) =
if (test). anyEvent(comp) ...

4.2 Progress Monitoring

It is easy to add a process monitor, that adds a sequential number
to the output text area, 4 times per second as long as the database
search is ongoing. Redefine the scriptsearchInDatabase:

searchInDatabase = {* Thread.sleep(3000)*}
|| progressMonitor

progressMonitor = {*Thread.sleep(250)*}
@gui:{searchTF.text+=here.pass}
...

here.pass returns a loop counter of the sequence inprogressMonitor.

5. Example: The Sieve of Eratosthenes
The Sieve of Eratosthenes is an algorithm to compute prime num-
bers, named after a Greek who invented it thousands of years ago .
Informally, the algorithm starts with the first prime number, 2. From
the natural numbers, up to a maximum value for practical reasons,
it wipes out all multiples of this prime. The next remaining number
in the list, 3 must then also be prime. Now all multiples of 3 are
erased. This way prime numbers are discovered one by one, and
each acts as a sieve to find more primes.

It is fun to program this using tiny sieves as processes that run
in parallel, at least conceptually. Think of a pipeline witha simple
number generator, a list of sieves and a printer. There is a sieve for
each recognized prime number; sieve 2 filters out all multiples of
2, etc. After 3 tiny sieves have been generated, the processes would

9 2011/12/27



be like:

object Eratosthenes {
val toPrint = new NetworkConnection

public script..

main(args:Array[String]) =

generator(2,1000000) ==> (..==>sieve)
=={toPrint}==> printer

generator(s:Int,e:Int) = for(i<-s to e) <=i

sieve = =>p:Int? @toPrint:<=p;
..=>i:Int? if (i%p!=0) <=i

printer = ..=>i:Int? println,i

<==>(i:Int) = {}
}

Thegenerator script generates numbers and sends these over the
network.printer receives numbers and prints those. Both scripts
are quite generic and reusable; in principle they may be moved to a
trait.

Note that the first number that each sieve receives is its own
prime, and it must be forwarded to the printer. Immediately af-
ter this reception, the next sieve is created; this is the effect of
the optional exit in combination with the parallel loop of sieves
(.. ==> sieve). Subsequent numbers are forwarded to the next
sieve in the chain.

The pipe in main towards the printer contains annotation
toPrint, which corresponds to the annotation inside thesieve
script.toPrint is an instance of classNetworkConnection; the
implementation of this class will ensure that the sending ofa prime
by<= p will be redirected towards the printer. Without this provi-
sion, the prime would accidentally be forwarded to the brandnew
next sieve.

6. Parsing
Grammar descriptions may be very concise in SubScript. Thiseases
text parsing. For instance, you would specify the structureof a
sequence of comma separated values, and lines thereof, as:

csv = value..","
csvLines = csv "\n"..

This would work together with implicit scripts for value andstring
constants, that parse those. With parameters the result of the parse
would be returned:

csv (r : List[T] ?) = value,v:T? {!r+=v!} ..","
csvLines(rr: List[List[T]]?) = csv,r:List[T]? {!rr+=r!} "\n"..

Comma separated values CSV List Disambiguation
Low level: expectations
GUI similarity: - process expressions record state; less state

variables needed - expectations

7. Call Graph Semantics
Template trees Call graph

Semantics by - user defined operators - executers

Messages... - AA events - exclude, suspend - tree buildup/man-
agement - activate, success, resume, deactivate - continuations -
communication establishment - asynchronous AA result handling -
AA execution - AA relocation

8. Implementation
- data structures for graphs - DSL to build these up advantages:
easy to develop & install; free language features; relativesimple
changes to compiler needed - messages - tbd: suspend/resume,
communication 2000 lines of code; table

9. Conclusion
ACP addition plus some syntactic sugar enables: - Easy event-
driven - Concurrency and Parallelism - Grammar - Dataflow - Logic
- Actors - Timing

We see that searchCommand has been defined as an addition of
a button and a character. This is something new in programming; I
call it ”Item Algebra”. Scala as base language - concise (class defi-
nitions); handy case classes and function types - similar definitions
with equals: good fit - inspiring syntactic sugar TBD: complete the
implementation develop formalism for language definition script
blocks

A. Syntax definition
A.1 Syntax ambiguities

The SubScript has been optimized for conciseness and minimal
use of parentheses and braces. There result is a set of ambiguities,
dealing with . if script.. abstract scripts vs = next line

B. Event handling scripts

C. Execution Manipulation
Using script annotations of the form @code:, the execution of parts
of a SubScript program may be manipulated, in cooperation with
the script executer. Specific objects with names such as sim,gui,
processor may be defined so that they would have the following
meanings when used in annotations:

10 2011/12/27



Annotation Meaning
gui The Scala codethere must be ex-

ecuted in the GUI thread
dbWriteThread The Scala codethere must be ex-

ecuted in the given database write
thread

threadPool The Scala codethere must be exe-
cuted in a thread in the given thread
pool

processor All Scala codethere and below
must be executed at the given pro-
cessor

lowPriority The threaded Scala codethere
should run at a low priority

lowActionPriority The atomic actionsthere and be-
low have a low priority

key.typed The event handling codethere is
be executed in response to key
typed events

topology The topology for the network
there

parentNetwork The send or receive callthere is
directed to the network one level
up

parentP ipe The send or receive callthere is
directed to the pipe one level up

disambiguate Operatorsthere and below are dis-
ambiguated

markov The program partthere and below
is managed by a specific Markov
system

markovchance = .5 The atomic actionthere has a rela-
tive chance to succeed in the given
Markov system

realtimer The program partthere and below
is managed by a specific realtime
engine

startT ime = 1 pm The atomic actionthere starts at 1
PM real time

duration =
2 seconds

The atomic actionthere succeeds
after 2 real time seconds from its
start

sim The program partthere and be-
low is managed by a specific timed
simulation engine

startT ime = 1 pm The atomic actionthere starts at 1
PM simulation time

duration =
2 seconds

The atomic actionthere succeeds
after 2 simulation time seconds
from its start

D. Formal and Actual Script Parameters
Overview of formal and actual parameter use
Formal declaration Formal type Actual call Value of p
p: P FormalInputParameter[P] expr ActualValueParameter ( expr)
p: P? FormalOutputParameter[P] varExpr? ActualOutputParameter (varExpr, {=>varExpr=_)
p: P?? FormalConstrainedParameter[P] expr ActualValueParameter ( expr, {=> expr=_)
varExpr? ActualOutputParameter (varExpr, {=>varExpr=_)
varExpr if(c)? ActualConstrainedParameter( expr, {=> expr=_}, {_=>c})
formalParam?? ActualAdaptingParameter(_formalParam)
formalParam if(c)?? ActualAdaptingParameter(_formalParam, {=>c})
!! To be updated from source code !!

Suppose a script key(c:Char??) reads a character from the keyboard. How to use this script in numKey(i: Int??), that

numKey(i: Int??) =
_i match (
case ActualValueParameter(value) => if (i>=0 && i<=9)
case ActualOutputParameter(_) => key,c: Char if(c>=’0’
case ActualConstrainedParameter(_,constraint) => key,c:
case ActualAdaptingParameter(_,formalParameter,constrai

References
[1] P. Q. Smith, and X. Y. Jones. ...reference text...

11 2011/12/27


