
Reactive Programming using the Algebra of
Communicating Processes

André van Delft
Independent Researcher

andre dot vandelft at gmail dot com

Anatoliy Kmetyuk
Student, Odessa National Academy of Law
anatoliykmetyuk at gmail dot com

ABSTRACT
R&D on reactive programming is growing and this has delivered
quite many language constructs, libraries and tools. Scala program-
mers can use threads, timers, actors, futures, promises, observables,
the async construct, and others. Still it seems to us that the state of
the art is not mature: reactive programming is relatively hard, and
confidence in correct operation depends mainly on extensive test-
ing. Better support for reasoning about correctness would be useful
to address timing dependent issues.

The Algebra of Communicating Processes (ACP) has a poten-
tial to improve this: it lets one concisely specify event handling
and concurrency, and it facilitates reasoning about parallel systems.
There is an ACP-based extension to Scala named SubScript. We
investigate how it helps describing the internal behavior of Akka
actors, and how it combines with futures.

There is a considerable performance penalty for actors that are
mainly sending messages to one another. Therefore SubScript is
not well applicable to actor systems for which efficient message
handling is critical. However, for such systems SubScript may still
be useful as a tool for prototyping, performance prediction and test
specifications.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Dataflow languages

General Terms
Languages, Theory

Keywords
Algebra of Communicating Processes, ACP, data flow, concurrency,
non-determinism, reactive programming, actors, futures, Akka

1. INTRODUCTION
As argued in the Reactive Manifesto1, the need is growing for

applications that are event-driven, scalable, resilient and respon-
1http://www.reactivemanifesto.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SubScript State as of June 2014
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

sive. Reactive programming gains attention, particularly in the
Scala world. Developers can use the Akka toolkit2, which offers
abstractions such as actors [?], futures [?] and state transition ma-
chines (STMs). Akka has become a solid programming platform.
The message throughput of Akka actors suits many applications:
in the order of magnitude of one million per second, on a modern
CPU.
Yet we think that the way internal behavior of Akka actors is ex-
pressed, should be improved. Actors need to process incoming
messages; send messages on to other actors and be ready for their
responses; have timeouts for such expectations; and all this concur-
rently. It is possible to express such tasks in both object-oriented
and functional languages, and certainly in Scala. Yet we think that
the current Akka programs are a bit obscure:
• Actors may have a receive method for processing incom-

ing messages; state is then usually maintained using instance
variables. The receive method is essentially a list of incom-
ing message kinds and the associated handlers. The typical
order for such messages has no clear relation with the pro-
gram text.

• Alternatively actors may contain an STM: a becomemethod
allows to change to a parameterized state. This overcomes
part of the unclarity of the receive method, but the code may
seem a bit spaghetti-like. become is a kind of jump, a higher
level reminiscent of the goto instruction in the doghouse.

• Futures and async constructs are available for concurrency
and time management inside a single actor. Futures are high
level abstractions for convenient expressing data dependen-
cies while allowing for concurrency; however in our opinion
these constructs obfuscate the control flow somewhat.

For us this was illustrated during the Coursera course "Principles
on Reactive Programming" that we both took in November and De-
cember 20133. Going from the natural language specification to a
working program seemed very hard. We did not feel well about our
solutions to the main actor programming assignment: these passed
both our tests and the tests created by the course leaders, but the
program text was not clear enough to reason easily about correct-
ness, e.g. with respect to time dependencies and race conditions.
One of us was helped by designing the actor behavior for this as-
signment in the formalism of the Algebra of Communicating Pro-
cesses (ACP). This is a concurrency theory that allows for con-
cise specifications of event-driven and concurrent processes. It also
helps formal reasoning about process behavior. ACP is good at de-
scribing processes that communicate synchronously, and less at de-
scribing asynchronously communicating processes, such as actors.
2http://akka.io/
3https://www.coursera.org/course/reactive

Thus it seems well suited for describing internal actor behavior,
and, for the time being at least, not for complete actor systems.
It is also possible to program applications using ACP. We are devel-
oping an ACP based extension to Scala by the name of SubScript.
This paper is a follow up to a paper presented at the Scala Work-
shop 2013[?] about dataflow programming support in SubScript,
with applications to actor systems. We present in this paper the
ideas that have evolved since then, and a more complete example
actor application. Futures and ACP processes have some common
properties. Apparently they may be mixed in SubScript programs,
by virtue of the implicit features in Scala.
Since the previous paper there have been some changes in the syn-
tax of SubScript: all fat arrows related to dataflow, such as => and
==> are now curly arrows such as > and >. Script closure nota-
tion now uses rectangular brackets ([....]) instead of triangular
brackets (<....>).
SubScript comes with a compiler, which is a derivative of the regu-
lar Scala compiler. It transforms ACP-like specifications into calls
to an API of a SubScript Virtual Machine. At the time of writing the
compiler & virtual machine understand code that closely matches
the earlier draft specifications for the Coursera assignment. Under
the hood the same Akka functions are called as in a plain Scala ver-
sion. This is desirable since the Akka API is mature and solid, and
the SubScript layer on top it is rather small.
However the process management by the SubScript virtual machine
requires processing power. On a modern CPU the throughput of
SubScript actions is typically between 10,000 and 100,000 per sec-
ond. This means that message processing in a SubScript-actor pro-
gram is 10 to 100 times slower than in a plain Scala version. This
gap is smaller for applications where the internal processing of a
single message requires more time than the message handling by
the Akka library.

The rest of this paper is structured as follows: Four sections in-
troduce ACP, SubScript, the "call graph" semantics, and the ba-
sic implementation. These sections contain text fragments literally
copied or adapted from the predecessor paper. The latter has more
details; there are some minor syntactical differences.
Then sections with example applications highlight SubScript’s sym-
biosis with actors, futures and observables. Thereafter the imple-
mentation is discussed. Next we report the measured performance
of SubScript actors. We then refer to some related work, and make
concluding remarks.
The work is in progress. Our actor examples compile and run well,
but the compiler does not process all new syntax yet, at the time
of writing. The interoperation of processes and futures is not yet
working.

2. ACP
The Algebra of Communicating Processes [?] is an algebraic

approach to reasoning about concurrent systems. It is a member of
the family of mathematical theories of concurrency known as pro-
cess algebras or process calculi4. More so than the other seminal
process calculi (CCS [?] and CSP [?]), the development of ACP fo-
cused on the algebra of processes, and sought to create an abstract,
generalized axiomatic system for processes.
ACP uses instantaneous, atomic actions (a,b,c,...) as its main prim-
itives. Two special primitives are the deadlock process δ and the
empty process ε. Expressions of primitives and operators represent
processes. The main operators can be roughly categorized as pro-
viding a basic process algebra, concurrency, and communication:
4This description of ACP has largely been taken from Wikipedia

• Choice and sequencing - the most fundamental of algebraic
operators are the alternative operator (+), which provides
a choice between actions, and the sequencing operator (·),
which specifies an ordering on actions. So, for example, the
process (a + b) · c first chooses to perform either a or b,
and then performs action c. How the choice between a and
b is made does not matter and is left unspecified. Note that
alternative composition is commutative but sequential com-
position is not (because time flows forward).

• Concurrency - to allow the description of concurrency, ACP
provides the merge operator ‖. This represents the paral-
lel composition of two processes, the individual actions of
which are interleaved. As an example, the process (a · b) ‖
(c · d) may perform the actions a, b, c, d in any of the se-
quences abcd, acbd, acdb, cabd, cadb, cdab.

• Communication - pairs of atomic actions may be defined as
communicating actions, implying they can not be performed
on their own, but only together, when active in two parallel
processes. This way, the two processes synchronize, and they
may exchange data.

ACP fundamentally adopts an axiomatic, algebraic approach to
the formal definition of its various operators. Using the alternative
and sequential composition operators, ACP defines a basic process
algebra which satisfies the following axioms:

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ x = x

(x+ y) · z = x · z + y · z
(x · y) · z = x · (y · z)

The primitives 0 and 1, also known as δ and ε, behave much
like the 0 and 1 that are usually neutral elements for addition and
multiplication in algebra:

0 + x = x

0 · x = δ

1 · x = x

x · 1 = x

There is no axiom for x · 0.

x + 1 means: optionally x. This is illustrated by rewriting (x +
1) · y using the given axioms:

(x+ 1) · y = x · y + 1 · y
= x · y + y

The parallel merge operator ‖ is defined in terms of the alter-
native and sequential composition operators. This definition also
requires two auxiliary operators:

x ‖ y = xTy + yTx+ x|y

• xTy - "left-merge": x starts with an action, and then the rest
of x is done in parallel with y.

• x|y - "communication merge": x and y start with a commu-
nication (as a pair of atomic actions), and then the rest of x
is done in parallel with the rest of y.

The definitions of many new operators such as the left merge oper-
ator use a special property of closed process expressions with · and

+: with the axioms as term rewrite rules from left to right (except
for the commutativity axiom for +), each such expression reduces
into one of the following normal forms: (x + y), a · x, 1, 0. E.g.
the axioms for the left merge operator are:

(x+ y)Tz = xTz + yTz
a · xTy = a · (xTy)

1Tx = 0

0Tx = 0

Again these axioms may be applied as term rewrite rules so that
each closed expression with the parallel merge operator ‖ reduces
to one of the four normal forms. This way it has been possible to
extend ACP with many new operators that are defined precisely in
terms of sequence and choice, e.g. interrupt and disrupt operators,
process launching, and notions of time and priorities.
Since its inception in 1982, ACP has successfully been applied to
the specification and verification of among others, communication
protocols, traffic systems and manufacturing plants.
In 1989, Henk Goeman unified Lambda Calculus with process ex-
pressions [?]. Shortly thereafter, Robin Milner et al developed Pi-
calculus [?], which also combines the two theories.

3. SUBSCRIPT
SubScript extends Scala with a construct named "script". This is

a counterpart of ACP process refinements, that coexists with vari-
ables and methods in classes. The body of a script is an expression
like the ACP process expressions.

3.1 Notation
Esthetically, ACP processes are preferably notated with the math-

ematical expression syntax. However, ACP symbols ·, ‖ are hard
to type; for a programming language ASCII based alternatives are
preferred. SubScript therefore applies a semicolon (;) and amper-
sand (&) for sequential and parallel composition. The special ACP
processes 0 and 1 would clash with the usual notation for numbers;
therefore these are replaced by symbols: (-) and (+).
As with multiplication in math, the symbol for sequence may also
be omitted, but then some white space should separate the operands.
As usual, the semicolon should have low precedence, and the white
space operator should have high precedence. This way one can get
rid of parentheses. Instead of (a;b)+c; d and
(a b + c) d one could write a b + c; d.
Scripts are usually defined together in a section, e.g.,

script..
hello = print("Hello,")
test = hello & print("world!")

From here on the section header script.. is mostly omitted for
brevity.

3.2 Parallelism
Between hello and print("world!") is a parallel oper-

ator. Each operand essentially contains a simple code fragment
rather than code to be run in a separate thread. Therefore one
operand will be executed before the other; the result is either "Hello,
world!" or "world!Hello,". In general the atomic actions in concur-
rent processes are shuffle merged, like one can shuffle card decks.
In the "hello world" example the most straightforward execution
strategy will deterministically apply a left-to-right precedence for
the code fragments that are operands to the parallel operator &.

However, alternative strategies are possible, e.g. for random simu-
lations.
SubScript offers more forms of parallelism. Most notably the oper-
ator || denotes strong or-parallelism: it succeeds when any operand
has success; it terminates when any operand terminates success-
fully.

3.3 Deterministic control and Iteration
SubScript has if-else and match constructs like the ones in

Scala. Six operand types support iterations and breaking:
while marks a loop and a conditional mandatory break
for much like while and like the Scala for-

comprehension
... marks a loop; no break point, at least not here
.. marks a loop, and at the same time an optional break
. an optional break point

break a mandatory break point

3.4 Method Calls and Script Calls
Both scripts call the method print. Actually this is a short-

hand notation for a fragment of Scala code that normally appears
between braces, as in {print("Hello,")}. The body of the
script test contains also a script call to hello.
A SubScript implementation will translate each script into a method.
This way most Scala language features for methods also apply to
scripts: scripts may have both type parameters and data parame-
ters; each parameter may be named or implicit. Variable length
parameters and even script currying are possible.

3.5 Result Values
Scripts may also have result values, which are comparable to

method return values. A difference is that a method returns only
once, whereas the script result value is available to the caller each
time that the script has a success; this may be more than once, due
to the 1-element of ACP.
The following scripts each have result type Int:

s1:Int = {5}
s2 = s1
s3 = s2; {5}^
s4 = {5} v̂; {v}

The first script has its result type explicitly stated; for the oth-
ers the type is inferred. The following type inference rules apply:
Script[T]
• If the script expression is just a code fragment or a script call

or a method call then the result type thereof is used as the
inferred type

• If some code fragments and calls to methods and scripts in
the script expression are suffixed by a caret (ˆ), then the type
is inferred from those fragments and calls.

At the time of writing it was not yet clear how the result type will
be determined in other cases.

In {5}ˆv the result of the code fragment is stored in a local
variable named v. As no declaration for this name was in scope,
the fragment also implicitly declares the variable here.

3.6 Interoperation with Scala code
Scripts interoperate with Scala code in several ways:
• Any fragment of Scala code placed between pairs of braces,

and variations thereof, may serve as an operand in a pro-
cess expression. The start and end of such fragments will
correspond with atomic actions in ACP. This way the code

fragments may overlap, which is useful when they are run in
separate threads, or when they denote actions that take some
simulation time in a discrete event simulation context.

• In such code fragments and in calls to methods, Scala ex-
pressions may use a special value named here. It refers to
the current node in the call graph, like this refers to the
current object. here is in particular useful for implement-
ing event handling scripts. For convenience it is an implicit
value so that it may be left out of parameter lists containing
an implicit formal parameter having the node type.

• Script expressions placed between rectangular brackets, such
as [{5}] and [(a;b)+c; d], are values of type Script[T]
for an inferred type T. Such values are essentially closures;
they may act inside a script expression as script calls.

• From Scala code a so called script executor may execute a
script closure. The executor may be tailored for the type of
application, e.g. discrete event simulations. After the ex-
ecution ends, the executor may provide information on the
execution, e.g. on whether the script ended successfully or
as deadlock (δ).

The following would be a bridge method:

def testBridge = subscript.DSL._execute([test])

The DSL method _execute creates a fresh CommonExecutor
(the default executor type) and then calls its run method with the
script closure. Other types of executors could be more suited for
specific application domains, such as discrete event simulations and
multicore parallelism. With any given executor a script may be run
as

executor.run([test])

4. CALL GRAPH SEMANTICS
A SubScript program is executed by an executor, which will

maintain a call graph, which is at run time derived from the static
structure of the invoked scripts.

Figure 1: Template Tree

This static structure may be
represented by so-called "Tem-
plate trees". For instance,
consider the following process
which prints optionally "Hello",
and then "world!":

Main = . print("Hello ");
print("world!")

Figure 1 gives the template tree.
At run time this tree is used to
grow and prune the call graph,
as shown in figure 2. The pre-
decessor paper contains a more
detailed explanation.

5. BASIC IMPLEMENTATION
At first SubScript had been implemented as a domain specific

language (DSL); the so called SubScript Virtual Machine executes
scripts by internally doing graph manipulation. The VM has been
programmed using 2000 lines of Scala code. This is not a complete

Figure 2: Call Graphs

implementation; most notably support for ACP style communica-
tion is still to be done. When complete the VM may contain about
4000 lines.
In principle the DSL suffices for writing the essence of SubScript
programs. However, with the special syntax, e.g. for parameter
lists, n-ary infix operators, various flavors of code fragments, spec-
ifications become considerably smaller and these require much less
parentheses and braces (which is also important for clarity).
A special branch of the Scala compiler was modified so that it trans-
lates the genuine SubScript syntax to the DSL. This took about
2000 lines of Scala code, mainly in the scanner, the parser and the
typer.

6. EXAMPLE: SUBSCRIPT-ACTORS
We build a SubScript-Actor system, in which one actor, a front

processor, performs computational tasks on requests, by splitting
these up and deferring them to other processor actors. After the
front processor has received all results from the processor actors, it
aggregates these results and sends those back to the original task re-
quester. From now, we will use Di, Df, Rf, Ri data types to
represent input data, forked data fragments, forked result fragments
and output result respectively. At any time during processing a new
task may arrive; this disrupts ongoing data processing, if any.
The communication between the front processor and the other pro-
cessors is unreliable. For each of such processors there is a proxy
actor, which is supposed to communicate more reliably with the
front processor. On a new task, each processor first sends a receipt
acknowledgement back; then it does the potentially time consum-
ing operation; and finally it replies the result thereof.

Things may go wrong:
• If a proxy does not get receipt acknowledgement within a

second, it will resend the task to the processor; up to at most
3 times.

• If there is still no acknowledgement after these tries, the proxy
sends a failure message back to the front processor.

• The front processor will also reply a failure to the original
requester when it receives such a failure message

• It will also do so when it has not received all processor results
within 10 seconds.

This is not necessarily a good design for a task processor system;
we aim to show how to specify a non-trivial SubScript actor system.

6.1 Processor
The Processor class has the following live script:

live = task/.. ; ...

As in Scala, the semicolon denotes sequence but it is here an
operator rather than a statement separator. SubScript operator pri-
orities are the same as in Scala, with the semicolon having the low-
est priority. The following expression with parameters would be
equivalent: (task/..) ;
Behind the semicolon there are three dots (...), denoting an itera-
tor: it turns the sequence into a loop, without specifying a possible
exit point. So live is an eternal loop of task/.. .
The slash there is a disruption operator: the left hand side happens,
possibly interrupted by the right hand side. This right hand side
(..) is an iterator which also denotes an optional break. It has the
following effect in combination with the disruption construct:

• first a task is activated

• then the optional break is activated. This turns the disruption
construct into a loop, but the next round of the loop is not yet
activated

• as soon as an atomic action in task happens, another in-
stance of task is activated, so that this may disrupt the on-
going one

So during its life time a processor will do tasks; if it is busy with
a task that will be disrupted in case a new task has to start. A new
task starts when a Task message arrives:

task = << Task(data: Df, id)
=> val tasker = sender

tasker!ConfirmReceipt(id)
==> {*process(data)*}
~~> {tasker ! Result(id, _)}
>>

The brackets <<....>> denote a message handler; on the in-
side there is essentially a partial function, like in the usual receive
methods of actors. Multiple of such message handlers may be ac-
tive at the same time; these handlers are considered when Akka
gives an message to the actor for handling. If any such active mes-
sage handler has a partial function that is defined for the message, it
will handle it, and the actor’s receive method will not be called.
In this example the partial function for the message handler has
only one component; therefore the message handler syntax allows
the case keyword to be omitted.
The part to the left of the long fat arrow (==>) is in ACP terms
an atomic action corresponding the initial handling of the message.
The script expression to the right, {*process(data)*} >
{tasker!Result(id, _)}, denotes what happens next.
This fragment contains a long curly arrow, meaning data flow. The
asterisks in {*process(data)*} mark a threaded code frag-
ment: this is executed in a separate thread. The return value of
process(data) becomes the result of the code fragment. Then
this result value is taken by the arrow to serve as input parameter
for operand at the right: {tasker!Result(id, _)}. This is
essentially a script closure like
(p:T) => [{tasker ! Result(id, p)}].

6.2 Proxy
A high level version of the live script for Proxy actors is:

live = receive_task
((times(3)

{target!currentMessage} sleep(1 second)
) fail

/ receive_confirmation
(handle_result || after(7 second) fail)

)
/ ..

times(i:Int) is an iterator script; it is defined in object
subscript.Predef as while(pass<i). pass is a method
that implicitly accepts the here value; it returns the "pass number"
of the nearest ancestor operator that may be an iteration.
The after script is inherited from SubScript actor; it performs an
empty atomic action after the duration specified by its parameter.
It is placed in an or-parallel composition with handle_result
using the operator ||; this means that whichever of after and
handle_result terminates successfully will cause this compo-
sition to terminate successfully.

Other scripts that live calls, such as receive_task would
set and use instance variables such as

var currentMessage: AnyRef = null
val taskRequester: ActorRef = null

It may be worthwhile to get rid of such instance variables by
inlining the other scripts such as receive_task, into a lower
level version of such as live:

live = << currentTask @ Task(data, id)
=> val requester = sender

val TaskId = id // upper case for below

==> ((times(3)
{target!currentTask} sleep(1 second)
) {requester ! Failure(TaskId)}

/
<<ConfirmReceipt(TaskId)>>
(<<r@Result(TaskId,Some(data))
=> requester ! r; reset(None)>>

/
after(7 second)
{requester ! Failure(TaskId)})

)
>>
/ ..

Note that the message handlers (<<....>>) are now nested.
For <<ReceiptConfirmation(TaskId)>> there was noth-
ing to do in the partial function; for sake of brevity the arrow =>
could be omitted.

6.3 Front Processor
The Front Processor receives tasks and splits these up; then it

sends the partial tasks to the proxies, using Akka’s ask method.
This yields a collection of Futures that will produce the replied
data. Then a SubScript process starts an and-parallel loop over all
these futures.

live = (task / ..; ...) || config...

task = << Task(data: Di, taskId)
=> val taskRequester = sender

var responses : List[Rf] = Nil
var taskRequester: ActorRef = null
val fd:Seq[Df]=fork(data,processors.size)
val futureAnswers =
(proxies zip fd) map{
(p, d) => p ? Task(d, taskId))

}

==>
(for (fa<-futureAnswers) &&
(fa
~~> _.result match (

case s@Success[(Int,Rf)]
=> responses :+= s._2

case f@Failure
=> taskRequester ! Failure(f)}
==> (-)

)
)

)
{taskRequester

! Success((taskId, join(responses)))}
/ after(10 second)
{taskRequester ! Failure(TaskId)}

>>

config = << Configuration(processors)
=> setProxies(proxies); sender!Ready
>>

Scripts have some features in common with futures: they carry
data and handle concurrency; they support fork-join paradigm, and
they have notions of success and failure. Here a failure of a script
means that it terminates without having success. However, while
a future completes once, with either a success or a failure, a script
may have success more than once; and a failure may occur after a
success, like in the ACP process 1 + x · 0.
It is possible to specify a future as a kind of script call in a script
expression, using an implicit conversion method. Likewise a script
closure may be implicitly be converted to a future. success and
failures. But more than once success possible.

7. GOOGLE SEARCHES
In this example, we will demonstrate application of SubScript

to the problem of simple Google Search application. This is an
application which provides user with capabilities to search over the
Internet with the help of Google. Also, an application provides
user with a list of suggestion as he or she types the search query.
Suggestions shouldn’t be confused with search results: suggestions
try to complete the incomplete search query as user types; search
results are links returned by a search engine on a particular query.

7.1 GUI and Search API
Our sample application will have a simple GUI that contains:

• A text field for the user to type his or her search query

• A suggestions box with a list of suggestions. The items in
this box are clickable; when a user clicks on some suggestion
an event is generated.

Figure 3: Google Search GUI

• A search box with a list of search results. The items in this
box are also clickable.

• An embedded browser window that will display a website to
user after he/she clicks on some search result.

Most of modern GUI libraries harness the Observer pattern: other
objects, called Observers, can register themselves at GUI objects to
receive various events via callbacks.

More complex systems can be built using this pattern. From
a callback-registering method a Future[T] may be produced,
where T is the type of some event-specific data.

Thus we can safely put the following methods into the GUI trait
with the guarantee that they can be implemented in vast majority of
GUI libraries:

def textChange : Future[String]
def suggestionsClick : Future[String]
def searchResultsClick: Future[String]

Here, textChange represents a Future that will be com-
pleted once the input string in the search text field experiences some
changes. Meaning, a new character inputed by user will complete
this Future. This Future will be completed with the new input
string as its result.
suggestionsClick represents a Future that will be com-

pleted on mouse click event that happened on some suggestion
from the suggestion list box. This Future will be compteted with
the text of the selected suggestion.
searchResultsClick is similar to suggestionsClick,

but it responds to clicks on search results rather then suggestions.
It is completed by the clicked URL address.

Also, the application requires means to provide output to the
user. Specifically, methods for setting current list of suggestions,
search results and navigating the embedded browser to a given URL
are required:

def setInputString (str: String): Unit
def setSuggestions (ls : Seq[String]): Unit
def setSearchResults(ls : Seq[String]): Unit
def setBrowserUrl (url: String): Unit

This comprises a GUI interface of the application. It is possi-
ble to create concrete implementations of such an interface in the
majority of GUI libraries for Java/Scala, such as Swing.

Also, an API for doing actual Google search and retrieving sug-
gestions will be required:

def suggestions(req: String): Future[Seq[String]]
def search (req: String): Future[Seq[String]]

They will accept a String request as an argument and will return
a Future of the required result.

7.2 Reactive flow specification
Given the API mentioned above, it is easy to describe the lifecy-

cle of the application in SubScript:

live = textChange ~~> (req: String) => [
suggestions(req)~~>setSuggestions(_);
search (req)~~>setSearchResults(_)

]
|| suggestionsClick ~~>setInputString(_)
|| searchResultsClick ~~>setBrowserUrl(_)
; ...

This is an eternal sequential loop (; ...) of event handling ex-
pressions. There are three kinds of events, handled in an or-parallel
composition (||).

The first operand defines the handling of changes in the input text
field. textChange returns a Future[String]. This Future
is converted using an implicit conversion. Once it has success, the
right-hand operand of the dataflow operator > is activated. This
operand is a script closure, that receives the result of textChange
as actual parameter value. Its retrieves suggestions and updates the
GUI correspondingly; then it retrieves search results and again up-
dates the GUI. suggestions and search are also Futures
(this time from the Search API), converted into scripts using im-
plicit conversions.

The other two operands of || respond to clicks on the presented
suggestions and on search results, by updating the GUI. Again, fu-
tures are implicitly converted into scripts; and the results are trans-
mitted using the dataflow operator into the GUI update code. These
handlers take little time. Meanwhile a longer lasting text change
handling may have been ongoing; then this would be disrupted be-
cause of the or-parallel composition.

8. IMPLEMENTATION

8.1 SubScript Actors Implementation
SubScript Actors are implemented in a separate trait, named

SubScriptActor. This extends akka.actor.Actor and
overrides some methods.

First such overriden method is aroundPreStart. It is called
by Akka before actor starts and its main job is to register and start
the actor within the SubScript virtual machine (SVM) that is re-
sponsible for running this actor. Precisely, it starts the actor’s life-
cycle from the SVM:

override def aroundPreStart() {
runner.launch([lifecycle])
super.aroundPreStart()

}

The lifecycle script is also defined in this trait and represents
the lifecycle of the actor:

lifecycle = live || terminate; die

The lifecycle starts two processes in parallel. live process
is supposed to be overridden by the end user and is abstract in this
trait. It specifies the logic of the actor, such as what messages can
it handle and how. terminate process is a mean that allows to
terminate the actor on demand. The actor can be terminated simply
by completing terminate process: in this case, live will be
excluded. After either live or terminate has completed, the
die process starts. Its job is to do the final clean-up, it unloads the
actor from the ActorSystem and the memory.

Another aspect that requires explanation is the runner that was
used in aroundPreStart to launch the lifecycle. This ob-
ject is of type SubScriptActorRunner. That is a trait that
contains methods to launch and execute scripts; the purpose of this
trait is very close to the ScriptExecutor ones. Its working im-
plementation is an object SSARunnerV1 - this is the runner that
executes the SubScript scripts using Akka’s scheduler rather then
simple while-loop.
SubScriptActor uses multiple message handlers to handle

its messages, as opposed to akka.actor.Actor that uses only
one handler, receive. It contains the collection of such handlers:

private val callHandlers = ListBuffer[
PartialFunction[Any, Unit]]()

Actor messages specified in message handlers need to be inter-
preted as SubScript atomic actions. Akka Actor class has hook
functions such as aroundReceive; usual receive processing replaced
by SubScript action handling.

Normally SVM executes a script in a loop that handles call graph
message synchronously sequentially. There are alternatives, as the
body of the loop is a method, tryHandleMessage, that may as
well be called from outside. For the purpose of running SubScript
Actors, there are 3 options for the coexistence of Akka and the
SVM:

• each in their own threads; use wait and notify for syn-
chronization

• describe the coordination as a separate SubScript process,
run in its own SVM

• tryHandleMessage in the SVM is invoked by timer call-
backs and aroundReceive

For SubScript actors the third option is taken; the appendix lists
the main source code.

The SubScript compiler translates a simple message handler
<<partialFn>> (which has no ==> scriptExpr parts) into

@{initForReceive(there, partialFn)}: {. .}

doScriptSteps_loop does at most 1 background action (hav-
ing a low priority) at a time. Other strategies are in principle also
possible. Message processing will have higher priority.

Akka employs aspect-oriented programming to allow developers
to extend default Actor’s behavior. This is done by around-aspect
methods such as aroundReceive, which defines the logic of
Akka message handling by a particular actor.

In SubScript Actors the message handling logic needs to be dif-
ferent from usual Akka Actors, so class SubScriptActor over-
rides this method. First, aroundReceive lets the SVM do its
handling using calls runner.doScriptSteps; then it does the
actual Akka message handling. It does not use the standard receive
method for this.
A SubScriptActor contains a collection of message handler func-
tions of type PartialFunction[Any, Unit], that is man-

aged by the SVM. aroundReceive looks for a handler capable
to handle the message:

runner.doScriptSteps
callHandlers.collectFirst {
case handler if handler isDefinedAt msg
=> handler(msg) }

match {
case None => super.aroundReceive(receive, msg)
case Some(_) => super.aroundReceive(

{case _: Any =>}, msg)
runner.doScriptSteps

}

If a message had been handled here, Akka should not cause it
to be handled again; yet super.aroundReceive needs to be
called. This is done by supplying as "receive" parameter a partial
function that can handle any message and that does nothing when
the message has been handled.
If the message had not been handled, the actor can handle the mes-
sage in its regular receive method. This is a fall back option with
lightweight message handling that is supposed not to interfere with
the handling in scripts.

A general message handler is of the form

<< case p_1 => scalaCode_1 ==> subScriptExpr_1
case p_2 => scalaCode_2 ==> subScriptExpr_2
....
case p_n => scalaCode_n ==> subScriptExpr_n >>

On lines without scalaCode or a subScriptExpr the corresponding
arrows may be omitted.

var s:Script[T]=null
<< case p_1 => scalaCode_1; s=[subScriptExpr_1]

case p_2 => scalaCode_2; s=[subScriptExpr_2]
....
case p_n => scalaCode_n; s=[subScriptExpr_n] >>

if (s!=null) s

Here T is the most specific super type of the result types of the
subScriptExprs.

8.2 Data Flow
In {*process*} ~~> {tasker!Result(id, _)} the

arrow is a data flow operator: a kind of sequential composition
that captures the result of the left hand side, and passes that on to
the right hand side as a parameter. Like with normal Scala code,
the underscore turns a script expression into a script lambda with a
parameter.
The following translations are done, with T as the return type of
process:

{*process*} ~~> {tasker!Result(id, _)}

{*process*} ~~> (p:T => [{tasker!Result(id, p)}])

do {*process*} v̂
then (p:T => [{tasker!Result(id, p)}])(v)

var v:T=null;
do @{there.onSuccess{v=there.result}}: {*process*}
then (p:T => [{tasker!Result(id, p)}])(v)

The construct ^v captures a result value into a variable v, for
which implicitly a declaration is made, in case a declaration was
not yet in scope.

There is ternary construct do x then y else zwhich means:
do x; after x has success y is activated. In case x deactivates with-
out success then z is activated. Both the then-part and the else part
are optional, but not at the same time. If the else-part is absent,
do-then is a binary sequential operator; it cannot iterate, so if it
has an iterator operand then that affects an n-ary operator higher in
the call graph.

In the final translated version, the ; sequential operator is used
to declare a local variable v as its first operand and then proceed
to the actual script execution. The second operand of ; is a then
sequential operator application.

The left-hand side operand of the do-then construct is an an-
notation applied to left-hand side operand, {*process*}, of the
original > operator. The annotation registers an onSuccess
callback in this operand, so that when it finishes execution its result
value becomes stored at the v variable.

The right-hand side operand of the do-then construct is a script
closure applied to the v variable. The v variable contains the result
of the original {*process*} script by the time of the application
due to the sequential nature of ; and do-then operators.

8.3 Interoperation with Futures
Scala’s Futures and SubScript processes are fundamentally

similar. They both represent a potentially time-consuming opera-
tion that results in some value (success) or in an exception (failure).

The following implicit conversion from Futures to processes
would allow one to use Futures in SubScript expressions just like
any other call:

implicit def script conversion[T](f: Future[T]):
Script[T]

= @{
f.onSuccess {case d =>
here.script.result = d
there.execute

}
f.onFailure{case e =>
here.script.failure = e
there.fail

}
}: {. .}

Here, the Future is transformed into an annotated event-handling
code fragment ({. .}). Such a code fragment is not automati-
cally executed by the SubScript Virtual Machine, but instead by
external code, through a call to the method execute.

The code inside the annotation registers two callbacks within the
converted future:
• when the future succeeds, the corresponding callback sets

the result value of the current script (conversion) to the
result of the Future; then it executes the event-handling
code fragment.

• when the future fails, the corresponding callback sets the
failure value of the current script; then it makes the event-
handling code fragment fail.

The once activated such a conversion script might be deactivated
because of another process, before the future had been completed.
One might expect that the future then would be cancelled; however
such an operation is currently not supported in the Scala Futures.

Conversely it is possible to convert a script closure to a future:

implicit def convert[T](s: Script[T]): Future[T] =
{
val p = new Promise[T]
val s1 =
[@{there.onSuccess{p success there.result}

{there.onDeactivation{ if(!there.hasSuccess)
p failure there.failure}}:

s
]

AkkaScriptRunner.execute(s1)
p.future

}

Here AkkaScriptRunner is much like the earlier discussed
SSARunnerV1: it may execute a given script in cooperation with
Akka’s actor system. During this execution it adds an annotation
the script that registers handlers for success and failure: on such
occasions that the corresponding values are transferred from the
script to the future.

A problem with this conversion is that the script may have mul-
tiple times success, so that the promise’s success method may be
called multiple times. Some extra logic may prevent this, but there
is anyway a kind of impedance mismatch. Anyway we don’t know
yet whether the conversion from scripts to futures will be useful or
not.

9. PERFORMANCE
We measured performance of using a Sieve of Eratosthenes ap-

plication, in which each prime sieve was implemented by an actor
process. On an iMac with a 2.7GHz Intel Core i5, the plain Scala
version got a throughput of about 1,000,000 messages per second,
whereas the SubScript version only got about 10,000 messages per
second. The performance penalty factor is therefore about 100.
We expect to improve performance considerably by relatively small
modifications, but we estimate that this way the gap will remain at
least a factor 25.

One reason for this can be inefficient mechanics of script pro-
cessing by the virtual machine. Currently, all the processing relies
heavily on message passing within the virtual machine. It is possi-
ble, that the a good fraction of such messages are "noise", meaning
they don’t carry any useful information and just throttle execution
speed.

In principle it seems possible that a SubScript virtual machine
follows a different execution strategy: the compiler or VM would
analyze a behavior specification and transform it into a finite state
machine representation. Then the SubScript actors performance
could much be much closer to the one of plain Scala actors.

10. RELATED WORK
The predecessor paper contains an overview of other languages

that show some resemblance to SubScript. SubScript seems to be
unique in allowing for an process algebra approach to actor pro-
gramming.

There is some noticeable work with process algebra as a the-
oretical underpinning to actors. E.g., the following papers apply
Pi-calculus: [?], [?]. [?] applies ACP to define actor semantics.

11. CONCLUSION
SubScript offers constructs from the Algebra of Communicating

Processes that apply well to reactive programming. It helps to con-
cisely specify internal actor behavior.
There is a performance penalty. Whether that is a problem depends

on performance requirements, and on the proportion of CPU time
required for internal actions to the total CPU time.
Futures may conveniently placed in SubScript process expressions.
Likewise SubScript processes may be converted into futures, but
there is an "impedance mismatch". A variant of Futures that sup-
ports a kind of 1-element from ACP, could be interesting.
Further R&D on ACP, SubScript and Actor systems could focus on
design, prototyping, performance analysis, testing and formal rea-
soning.
SubScript is an open source project5. It is currently implemented as
a branch of the regular Scala compiler, bundled with a virtual ma-
chine and a library for interfacing with AKKA actors and Swing
GUIs. We are considering replacing the regular Scala compiler
with the compiler front end named SugarScala [?].

12. ACKNOWLEDGEMENT
Anatoliy Kmetyuk receives a Google Summer of Code stipend

in 2014 for his work on the project.

APPENDIX
CommonScriptExecutor Main Loop

def run (s : CallGraphNode . _scriptType [_]) = {
in i t i a l i zeExecu t ion (s)
while (hasActiveProcesses) { / / main execution loop

i f (tryHandleMessage (In t . MinValue)==null)
awaitMessages

}
}
/ / minAAPriority => what atomic actions are handled
/ / In t . MinValue − allow for background task processing
/ / 0 − allow only foreground task processing
def tryHandleMessage (minAAPriority : In t) : CallGraphMsg = {

val m = dequeueCallGraphMsg(minAAPriority)
i f (m == null) return null
messageHandled (m) ; handle (m) ; m

}

Akka-SubScript Bridge Code

t ra i t SubScriptActorRunner {
def system : ActorSystem
def executor : CommonScriptExecutor
def launch (s : Scr ip t [_])
def execute (debugger : ScriptDebugger)
def doScriptSteps

}

object SSARunnerV1 extends SubScriptActorRunner {
lazy val system = ActorSystem ()
lazy val executor = ScriptExecutorFactory .

createScriptExecutor (true)
var launch_anchor : N_launch_anchor = null

def scheduledTaskDelay = 0.01 mill iseconds
def launch (s : Scr ip t [_]) = launch_anchor . launch (s)

script l ive = @{launch_anchor=there }: (∗∗ {. .} ∗∗)

5Subscript web site: http://subscript-lang.org

def execute (debugger : ScriptDebugger) {
i f (debugger!= null) debugger . a t tach (executor)
executor . in i t i a l i zeExecu t ion (_l ive ())
doScriptSteps_loop

}

def doScriptSteps_loop : Unit = {
doScriptSteps
i f (executor . hasActiveProcesses) {

system . scheduler . scheduleOnce (scheduledTaskDelay) (
doScriptSteps_loop)

}
}

var doScriptSteps_running = 0
def doScriptSteps = {

synchronized {
i f (doScriptSteps_running==0) {

doScriptSteps_running += 1
try {

var handledMsg =
executor . tryHandleMessage (In t . MinValue)

while (handledMsg!= null) {
handledMsg = executor . tryHandleMessage (0)

}
executor . messageAwaiting

}
f ina l ly {doScriptSteps_running −= 1}

}
}

}
}

t ra i t SubScriptActor extends Actor {

val runner : SubScriptActorRunner = SSARunnerV1

private object Terminator {
var executor : EventHandlingCodeFragmentExecutor [

N_atomic_action] = null

script block
= @{executor=new EventHandlingCodeFragmentExecutor (

there , there . scr iptExecutor) }: { . .}
def re lease = executor . executeMatching (isMatching=
true)

}

private val callHandlers =
ListBuffer [Par t ia lFunct ion [Any, Unit]] ()

script . .
l i ve
a f t e r (d : Duration) =

@{akka . pa t te rn . a f t e r (d , system . scheduler)
(Future{there . execute }) }:

{ . . }

private script . .
die = { i f (context ne null) context stop s e l f }
l i f ecyc l e = l ive | | terminate ; die
terminate = /∗ when aroundPostStop i s cal led ∗/

override def aroundPreStart () {
runner . launch ([l i f e cyc l e]) ; super . aroundPreStart () }

override def aroundPostStop () {
. . . . /∗ make scr ip t terminate happen∗/
super . aroundPostStop ()

}

override def aroundReceive (receive : Receive , msg:Any) {
runner . doScriptSteps
callHandlers . c o l l e c t F i r s t {

case handler i f handler isDefinedAt msg
=> handler (msg) }

match {
case None => super . aroundReceive (receive , msg)
case Some(_) => super . aroundReceive (

{case _ : Any =>} , msg)
runner . doScriptSteps

}

/ / SubScript actor convenience methods
def initForReceive (node : N_code_eventhandling ,

_handler : Par t ia lFunct ion [Any, Unit])
{

node . codeExecutor = EventHandlingCodeFragmentExecutor
(node , node . scriptExecutor)

val handler = _handler andThen
{_ => node . codeExecutor . executeAA}

synchronized {callHandlers += handler}
node . onDeactivate {

synchronized {callHandlers −= handler}
}

}
}

