Reactive Programming with Algebra

André van Delft

Independent Researcher
andre dot vandelft at gmail dot com

Abstract

R&D on reactive programming is growing and this has
delivered many language constructs, libraries and tools.
Scala programmers can use threads, timers, actors, futures,
promises, observables, the async construct, and others. Still
it seems to us that the state of the art is not mature: reac-
tive programming is relatively hard, and confidence in cor-
rect operation depends mainly on extensive testing. Better
support for reasoning about correctness would be useful to
address timing dependent issues.

The Algebra of Communicating Processes (ACP) has a
potential to improve this: it lets one concisely specify event
handling and concurrency, and it facilitates reasoning about
parallel systems. There is an ACP-based extension to Scala
named SubScript, which also adds language level support for
data flow and actor message handling. We show how Sub-
Script helps specifying the control flow of reactive programs.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Dataflow languages

General Terms Languages, Theory

Keywords Algebra of Communicating Processes, ACP,
data flow, concurrency, non-determinism, reactive program-
ming, actors, futures, Akka

1. Introduction

As argued in the Reactive Manifesto', the need is grow-
ing for applications that are event-driven, scalable, resilient
and responsive. Reactive programming gains attention, par-
ticularly in the Scala world. Developers can use the Akka
toolkit?, which offers abstractions such as actors [7], futures

!http://www.reactivemanifesto.org/
2 http://akka.io/

[Copyright notice will appear here once ’preprint’ option is removed.]

Anatoliy Kmetyuk

Student, Odessa National Academy of Law
anatoliykmetyuk at gmail dot com

[4] and state transition machines (STMs). Akka has become
a solid programming platform. Its message throughput suits
many applications: in the order of magnitude of one million
per second, on a modern CPU.

Yet we think that the way internal behavior of Akka actors
is expressed, should be improved. Actors need to process in-
coming messages; send messages on to other actors and be
ready for their responses; have timeouts for such expecta-
tions; and all this concurrently. It is possible to express such
tasks in both object-oriented and functional languages, and
certainly in Scala. Yet we think that the current Akka pro-
grams are a bit obscure:

e Actors may have a receive method for processing incom-
ing messages; state is then usually maintained using in-
stance variables. The receive method is essentially a list
of incoming message kinds and the associated handlers.
The typical order for such messages has no clear relation
with the program text.

e Alternatively actors may contain an STM: a become
method allows to change to a parameterized state. This
overcomes part of the unclarity of the receive method, but
the code may seem a bit spaghetti-like. become is a kind
of jump, a higher level reminiscent of the goto instruction
in the doghouse.

e Futures and async constructs are available for concur-
rency and time management inside a single actor. Futures
are high level abstractions for convenient expressing data
dependencies while allowing for concurrency; however
in our opinion these constructs obfuscate the control flow
somewhat.

For us this was illustrated during the Coursera course
"Principles on Reactive Programming" that we both took in
November and December 20133. Going from the natural lan-
guage specification to a working program seemed very hard.
We did not feel well about our solutions to the main actor
programming assignment: these passed both our tests and
the tests created by the course leaders, but the program text
was not clear enough to reason easily about correctness, e.g.
with respect to time dependencies and race conditions.

One of us was helped by designing the actor behavior for

3 https://www.coursera.org/course/reactive

2015/4/19

this assignment in the formalism of the Algebra of Commu-
nicating Processes (ACP). This is a concurrency theory that
allows for concise specifications of event-driven and concur-
rent processes. It also helps formal reasoning about process
behavior. ACP is good at describing processes that commu-
nicate synchronously, and less at describing asynchronously
communicating processes, such as actors. Thus it seems well
suited for describing internal actor behavior, and, for the
time being at least, not for complete actor systems.

It is also possible to program applications using ACP. We are
developing an ACP based extension to Scala by the name of
SubScript. This paper is a follow up to a paper presented at
the Scala Workshop 2013 [11] about dataflow programming
support in SubScript, with applications to actor systems. We
present in this paper the ideas that have evolved since then,
with applications to dataflow and actor programming. Fu-
tures and ACP processes have some common properties. Ap-
parently they may be mixed in SubScript programs, by virtue
of the Scala’s implicit features.

A SubScript implementation is available. It comes with a
compiler, which is a derivative of the regular Scala compiler.
This transforms ACP-like specifications into calls to an API
of a SubScript Virtual Machine. There are also compatibility
layer, for the Swing and Akka frameworks.

The rest of this paper is structured as follows: we introduce
ACP, SubScript (first by two examples, then by features), the
"call graph" semantics, and the basic implementation.* Sec-
tion 7 and 8 highlight dataflow programming and actor pro-
gramming with SubScript. The final sections discuss inter-
operation with futures, performance and some related work.

2. ACP

The Algebra of Communicating Processes [2] is an alge-
braic approach to reasoning about concurrent systems. It is
a member of the family of mathematical theories of concur-
rency known as process algebras or process calculi’. More
so than the other seminal process calculi (CCS [9] and CSP
[8]), the development of ACP focused on the algebra of
processes, and sought to create an abstract, generalized ax-
iomatic system for processes.

ACP uses instantaneous, atomic actions (a,b,c,...) as its main
primitives. Two special primitives are the deadlock process
0 and the empty process €. Expressions of primitives and
operators represent processes. The main operators can be
roughly categorized as providing a basic process algebra,
concurrency, and communication:

4 These sections contain some text fragments literally copied or adapted
from the predecessor paper. There have been some syntax changes:
® Code fragments now have different flavors of brace pairs.
® All fat arrows related to dataflow, such as => and ==> are now curly
arrows such as ~~> and ~~>.
® Script closure notation now uses rectangular brackets ([....]) in-
stead of triangular brackets (<. . ..>).

5 This description of ACP has largely been taken from Wikipedia

e Choice and sequencing - the most fundamental of alge-
braic operators are the alternative operator (4), which
provides a choice between actions, and the sequencing
operator (-), which specifies an ordering on actions. So,
for example, the process (a+b)-c first chooses to perform
either a or b, and then performs action c. How the choice
between a and b is made does not matter and is left un-
specified. Note that alternative composition is commuta-
tive but sequential composition is not (because time flows
forward).

® Concurrency - to allow the description of concurrency,
ACP provides the merge operator ||. This represents the
parallel composition of two processes, the individual ac-
tions of which are interleaved. As an example, the pro-
cess (a-b) || (¢ d) may perform the actions a, b, ¢, d in
any of the sequences abcd, acbd, acdb, cabd, cadb, cdab.

e Communication - pairs of atomic actions may be defined
as communicating actions, implying they can not be per-
formed on their own, but only together, when active in
two parallel processes. This way, the two processes syn-
chronize, and they may exchange data.

ACP fundamentally adopts an axiomatic, algebraic ap-
proach to the formal definition of its various operators. Using
the alternative and sequential composition operators, ACP
defines a basic process algebra which satisfies the following
axioms:

r+y = Y-+
(z+y)+z x4 (y+2)
rt+r =
(x4+y) -z = x-24+y-z
(z-y)-z = z-(y-2)

The primitives 0 and 1, also known as § and ¢, behave
much like the 0 and 1 that are usually neutral elements for
addition and multiplication in algebra:

0O+ = =
0-z = ¢
l.-z = =z
rz-1 = =z

There is no axiom for z - 0.
x + 1 means: optionally x. This is illustrated by rewriting
(z + 1) - y using the given axioms:
(z+1)y = 2-y+l-y
= T-yty

The parallel merge operator || is defined in terms of the
alternative and sequential composition operators. This defi-
nition also requires two auxiliary operators:

zlly=zly+yle+zly

2015/4/19

e x|y - "left-merge": x starts with an action, and then the
rest of x is done in parallel with y.

¢ x|y - "communication merge": and y start with a com-
munication (as a pair of atomic actions), and then the rest
of z is done in parallel with the rest of y.

The definitions of many new operators such as the left
merge operator use a special property of closed process ex-
pressions with - and +: with the axioms as term rewrite rules
from left to right (except for the commutativity axiom for
+), each such expression reduces into one of the following
normal forms: (z +y), a-z, 1, 0. E.g. the axioms for the left
merge operator are:

(z+y)lz x|z + yll=
a-zlly = a-(zly)
flz = 0
Olz = 0

Again these axioms may be applied as term rewrite rules so
that each closed expression with the parallel merge operator
|| reduces to one of the four normal forms. This way it has
been possible to extend ACP with many new operators that
are defined precisely in terms of sequence and choice, e.g.
interrupt and disrupt operators, process launching, and no-
tions of time and priorities.

Since its inception in 1982, ACP has successfully been ap-
plied to the specification and verification of among others,
communication protocols, traffic systems and manufactur-
ing plants.

In 1989, Henk Goeman unified Lambda Calculus with pro-
cess expressions [6]. Shortly thereafter, Robin Milner et al
developed Pi-calculus [10], which also combines the two
theories.

3. Examples: Simple GUI Applications

Suppose we need a simple program to look up items in a
database, based on a search string.

The user can enter a search string in the text field and then
press the Go button. This will at first put a "SearchingE"
message in the text area at the lower part. Then the actual
search will be performed at a database, which may take a
few seconds (simulated by a call to Thread.sleep). Finally
the results from the database are shown in the text area.

EEX

Searching for: asdf

If you would program this functionality in plain Scala,
the resulting code would be like:

val searchButton = new Button ("Go") {
reactions += { case ButtonClicked(b) =>
enabled = false
outputTA.text = "Starting..."
new Thread(new Runnable {
def run() {
Thread.sleep(3000)
SwingUtilities.invokelLater (new Runnable{
def run() {outputTA.text="Ready"
enabled = true
)
}}) .start
}
}

Here output TA denotes the output text area. A solution
in Java would be similar. This code looks very technical:
lots of indentations and braces. The control flow is hidden
in nested functions. Parallelism is done by calling a method
start on a Thread object. This looks like a usual method
call, but something magic happens inside. Parallelism does
not get a similar basic treatment as statement sequences do.

The order in which the lines are executed is spaghetti-
like:

e The first two lines are done during initialization, in the
main thread.

e Then a call back block follows, which, executed when
the button is pressed. Disabling the button and setting the
"Starting..." text must be done in the Swing thread; this
happens to be the case with the call back, so no special
provision needs to be taken.

e The call to start makes a background thread start that
will execute a sleep

e After this sleep, the background thread schedules code
for execution in the Swing thread, to set a "Ready" text
and to enable the button.

Between the static program text and the dynamic process
is a rather large conceptual gap. The programming task is
hard and boring. The result: many applications fail to appro-
priately enable and disable their GUI widgets, or they are
not responsive, or they even hang every now and then. This
situation is unnecessary.

The SubScript notation is much more concise and intuitive:

live = searchButton
@Qgui: {outputTA.text="Starting..."}
{* Thread.sleep(3000) =}
@Qgui: {outputTA.text="Ready"}

2015/4/19

The new lines here denote sequential composition. There is
also a semicolon to denote sequences. This is much like the
situation in Scala.®

e Line 1: 1ive is a method like refinement called "script"
for the controller behavior. searchButton is an object
that is silently converted into a script call
clicked (searchButton), using Scala’s support
for implicit conversions. This call "happens" when the
user presses the search button. As a bonus, the script
makes sure the button is exactly enabled when applica-
ble, i.e. when the program is ready to handle a button
click.

e Lines 2 and 4 each write a message in the text area.
An annotation, @gui :, makes sure this happens in the
Swing thread, as needed.

¢ Line 3 simulates the lasting database search using a sleep
call. The asterisks next to the braces specify that this is
done in a background thread, so that neither the GUI nor
the main thread will be blocked meanwhile.

e Line 5 turns the foregoing into an "eternal”" sequential
loop (. . ., "etcetera") of search sequences

SubScript cooperates well with Swing: the programmer can
easily specify event handling, widget enabling, and switch-
ing to the GUI thread. This is not due to specific language
features, but through a custom Swing compatibility layer,
which indicates that SubScript may also conveniently be
adapted to other frameworks.

You may write the code using more refinements; e.g.

¢ The user should be able to cancel an ongoing search, by
clicking a Cancel button, or pressing the Escape key.

e As long as the database search is ongoing, the progress
should be indicated: 4 times per second a number is
appended to the output text area

e The user can exit the application by clicking an Exit
button, or by clicking in the close box at the window’s
upper right corner. But exiting should first be confirmed
in a dialog box.

B2 FEX
Search |asdf | Cancel H Exit ‘

Searching for: asdf

In a Java or Scala version the application state would need to
be kept in variables; updating these would be nontrivial. The
progress indicator would be cumbersome and error-prone to
program (and that is why it is rarely present). It is easier to
grow the SubScript version.

The 3 user commands will be:

searchCommand = searchButton + Key.Enter
cancelCommand = cancelButton + Key.Escape
exitCommand exitButton + windowClosing

live = searchSequence. ..

searchSequence = searchCommand
showSearchingText
searchInDatabase
showSearchResults

searchCommand = searchButton

etc.

3.1 Extending the program
Now we add some realistic requirements to the program.
e The search action may also be triggered by the user
pressing the Enter key in the search text field.

e The search action requires that the input text field is not
empty; only then should the search button be enabled

6 SubScript has a similar semicolon inference as Scala. There are some dif-
ference. Like many behavior operators, sequential composition in SubScript
has 2 or more operands, which is relevant for loops. Also, inferred semi-
colons have a slighter lower priority than explicitly specified semicolons.

The first and second plus operators create exclusive choices
between buttons and key codes. These operands are not
processes, but data items for which implicit conversions
to processes have been defined (such as clicked and
keyPressed)’.

Script windowClosing acts on window closing events; it
is defined in SubScript.swing.Scripts.

Exiting is implemented using a process named exit that
runs in or-parallel composition to the rest. The or-parallel
operator is | |, it means that all operands happen; as soon as
one finishes successfully then the other is terminated and the
whole composition terminates successfully. In this case, the
left hand operand is an eternal loop of search sequences; the
right hand operand is a (probably) finite loop.

The exit process starts with the exit command being given;
then a confirmation dialog is run; all to be repeated while the
result of the confirmation dialog is false. The result of the
confirmation dialog is transferred using a dataflow operator

7 We can combine this way any kind of item; the implicit conversions allow
for an algebra of general items rather than just of processes.

2015/4/19

to a while construct; this operator is a curly arrow that names
and types the flowing data item.

live = searchSequence... || exit
exit = exitCommand
@Qgui: {! confirmExit !}
~~ (b:Boolean)~~> while(!b)

The @ gui annotation in combination with special brace pairs
around confirmExit ensure that the dialog is run asyn-
chronously in the GUI thread; this way other parts of this
program may remain active.

For the search sequence we now add items at the start and
the end.

searchGuard is an "active guard" containing a sequen-
tial loop. It first checks whether the text field contains some
text. If so, there is an "optional break", specified by the dot.
This means that the sequence and thus also the guard may
end successfully, so that searchCommand becomes active.
However maybe an event happens at the text field before the
user issues this search command; then the check needs to be
redone, etc (. . .).

Between searchGuard and searchCommand is a space.
Like in Scala, this construct has a high priority, but unlike
in Scala, it denotes sequential composition, in addition to
semicolons and new lines.

After searchCommand a new line follows; this separates
the first line from the remaining five lines. Therefore the
rest, including cancelSearch, can only become active after
the searchCommand has happened. cancelSearch is
preceded by a slash symbol, which stands for disruption: the
left hand side happens, possibly disrupted when the right
hand side starts happening. The parentheses group the items
on the preceding lines, so that the whole becomes the left
hand side of the slash operator.

The database search was mimicked by a few seconds of
sleeping; this gets a progressMonitor process in an or-
parallel combination.

This progressMonitor is an eternal loop of:

wait 1/4 second;

then append a loop counter to the output text field.

The pseudo-value here denotes "the current operand"; it
is comparable to this, the "current object". Its field pass
yields O, 1, 2, ... in subsequent passes of the loop.

searchInDatabase = {*Thread.sleep(3000)*}
| | progressMonitor

progressMonitor = {xThread.sleep(250)«}
@Qgui: {searchTF.text

+= here.pass}

searchSequence = searchGuard searchCommand
(showSearchingText
searchInDatabase
showSearchResults

)

/ cancelSearch

searchGuard = if(!searchTF.text.isEmpty)
anyEvent (searchTF)

cancelSearch = cancelCommand showCanceledText

showSearchingText = @Qgui: {outputTA.text =...}
showSearchResults = @Qgui: {outputTA.text =...}
showCanceledText = @Qgui: {outputTA.text =...}

4. SubScript Features

SubScript extends Scala with a construct named "script".
This is a counterpart of ACP process refinements, that co-
exists with variables and methods in classes. The body of a
script is an expression like the ACP process expressions.

4.1 Notation

Esthetically, ACP processes are preferably notated with the
mathematical expression syntax. However, ACP symbols
-, || are hard to type; for a programming language ASCII
based alternatives are preferred. SubScript therefore applies
a semicolon (;) and ampersand (&) for sequential and paral-
lel composition. The special ACP processes 0 and 1 would
clash with the usual notation for numbers; therefore these
are replaced by symbols: (-) and (+).

As with multiplication in math, the symbol for sequence may
also be omitted, but then some white space should sepa-
rate the operands. As usual, the semicolon should have low
precedence, and the white space operator should have high
precedence. This way one can get rid of parentheses. Instead
of (a;b)+c; dand (a b + c¢) done could write
ab + c; d

Scripts are usually defined together in a section, e.g.,

script. .
hello = {! print ("Hello,") !}
test = hello & {! print ("world!") '}

From here on the section header script . . is mostly omit-
ted for brevity.

4.2 Scala Code Fragments

{! print ("Hello, ") !} isa fragment of Scala code
that corresponds with an atomic action in the sense of ACP.
There are other flavors of brace pairs that have different
execution modes and different correspondence with ACP

2015/4/19

actions. Often the start and end of such fragments corre-
spond with atomic actions in ACP. This way code fragments
may overlap, which is useful when they are run in distinct
threads, or when they denote actions that take some simula-
tion time in a discrete event simulation context.

{r. normal code fragment: by default
a single atomic action, executed in

the main thread

{* ... *} code executed in a new thread; start
and end correspond with atomic ac-

tions

a single atomic action, executed by
an event handler

sequence of atomic actions, exe-
cuted by an event handler

a "tiny" code fragment, executed in
the main thread, not corresponding
with an atomic action

Within code fragments , Scala expressions may use a special
value named here. It refers to the current node in the call
graph, like t his refers to the current object. here is in par-
ticular useful for implementing event handling scripts. For
convenience it is an implicit value so that it may be left out
of parameter lists containing an implicit formal parameter
having the node type.

In case an uncaught exception happens inside the Scala code
of a (pair of) atomic actions, the action will fail, rather then
succeed. It is as if it ends in the O process, or, in ACP terms,
as a - 0. Note the equivalence a = a - 1, which suggests that
normally an atomic action ends in success.

4.3 Annotations

An annotation is a piece of Scala code that is executed when
the annotated part of a program is activated. The code may
refer to its operand using the value named there, which
is implicit, instead of here. It may in turn register callback
code for other events that happen on the operand, e.g. when
it is deactivated. This was applied for automatic GUI widget
enabling and disabling, as seen in the previous examples.
Annotations can also change the execution behavior for code
fragments. E.g. in

clearText = @Qgui: {! aTextField.text = "" !}

the code fragment will be executed asynchronously in the
Swing GUI thread.

This may take some time; meanwhile other code fragments
may be executed. Therefore the code fragment will now cor-
respond with 2 atomic actions, like with the code fragments
that are executed in new threads.

When combined with a tiny code fragment the annotation

will execute the code synchronously in the Swing GUI
thread.

4.4 Parallelism

Between hello and {!print ("world!") !} is a par-
allel operator: &. Each operand essentially contains a simple
code fragment rather than code to be run in a separate thread.
Therefore one operand will be executed before the other; the
result is either "Hello, world!" or "world!Hello,". In gen-
eral the atomic actions in concurrent processes are shuffle
merged, like one can shuffle card decks.

In the "hello world" example the most straightforward ex-
ecution strategy will deterministically apply a left-to-right
precedence for the code fragments that are operands to the
parallel operator &. However, alternative strategies are pos-
sible, e.g. for random simulations.

SubScript offers more forms of parallelism. Most notably the
operator | | denotes strong or-parallelism: it succeeds when
any operand has success; it terminates when any operand ter-
minates successfully.

4.5 Control and Iteration

SubScript has if-else and match constructs like the
ones in Scala. Six operand types support iterations and
breaking:

while marks aloop and a conditional mandatory break

for much like while and like the Scala for-
comprehension

marks a loop; no break point, at least not here

marks a loop, and at the same time an optional
break

an optional break point

break amandatory break point

4.6 Method Calls and Script Calls

The body of the script test contains call to script hello.
These are much like method calls.
A SubScript implementation will translate each script into a
method. This way most Scala language features for methods
also apply to scripts: scripts may have both type parameters
and data parameters; each parameter may be named or im-
plicit. Variable length parameters and even script currying
are possible.

If a tiny code fragment contains just a method call then
the special brace pair may be omitted. Thus the following
two fragments are equivalent:

{:print ("world!") :}
print ("world!")

4.7 Result Values

Code fragments and script have result values, which are
comparable to method return values. A difference is that a

2015/4/19

method returns only once, whereas the script result value is
available to the caller each time that the script has a success;
this may be more than once, due to the 1-element of ACP.
The following scripts each have result type Int:

sl:Int = {:5:}
s2 = sl

s3 = s2; {!5!'}»

executor may provide information on the execution, e.g. on
whether the script ended successfully or as deadlock (9).

The DSL method _execute creates a fresh Com-
monExecutor (the default executor type) and then calls its
run method with the script closure, e.g.,

subscript.DSL._execute([test])

The first script has its result type explicitly stated; for
the others the type is inferred. The following rules apply for
script results: Script [T]

e [f the script expression contains code fragments or script
calls that are suffixed by a caret symbol (") then the
result value of the script is set to the result of such a
code fragment or script call, at moments when those have
success. If the script result type has not been specified
explicitly then the result type is the union type of the
types of those code fragments and of the result types of
those script calls.

e [f there is exactly one code fragment or script call in the
script then it is considered to have such a caret suffix even
if it is not explicitly present.

¢ In other cases the result type of the script is Nothing.

In {5} v the result of the code fragment is stored in a
local variable named v. As no declaration for this name was
in scope, the fragment also implicitly declares the variable
here.

Result values are packed in a Try container, which is either
a Success or Failure container. The latter may hold an
exception, which may come of use when an exception has
happens inside a code fragment.

4.8 Script Lambdas

Script expressions placed between rectangular brackets,
suchas [{:5}] and [(a;b) +c; d], are values of type
Script [T] for an inferred type T. These are essentially
parameterless script lambda’s (AKA closures); a variable or
value holding such a lambda may act inside a script expres-
sion as a script call.

The Scala way of defining parameterized lambda expres-
sions applies as well, essentially giving parameterized script
lambda’s, e.g.,

(1:Int) => [(a;b)+c; d]

4.9 Script Execution from Scala

From Scala code a so called script executor may execute a
script lambda, as in

Other types of executors could be more suited for specific
application domains, such as discrete event simulations and
multicore parallelism.

5. Call Graph Semantics

A SubScript program
is executed by an ex-
ecutor that maintains
a call graph, which

is at run time derived
from the static struc-
ture of the invoked
scripts.

This static structure may
be represented by so-called
"Template trees". For in-
stance, consider the follow-
ing process which prints op-
tionally "Hello", and then "world!":

Figure 1. Template Tree

Main = . {! print("Hello ") !};

{! print ("world!") !}

executor.run([test])

The executor may be tailored for the type of application,
e.g. discrete event simulations. After the execution ends, the

Figure 1 gives the template tree. At run time this tree is
used to grow and prune the call graph, as shown in figure 2.
The predecessor paper contains a more detailed explanation.

1: Root 1: Root [1: Root] [1: Root]
Y Y Y Y

2: Call 2: Call [2:call] [2: call]
Y Y Y Y

—

—
EY

—

v v
[R] [5:] [B: {world}] [5:;] [9: {world}]
v ! v
[6.] [}': {Hello}] 7: {Hello}

Figure 2. Call Graphs

2015/4/19

6. Basic Implementation

At first SubScript had been implemented as a domain spe-
cific language (DSL); the so called SubScript Virtual Ma-
chine executes scripts by internally doing graph manipula-
tion. The VM has been programmed using 2500 lines of
Scala code. This is not a complete implementation; most
notably support for ACP style communication is still to be
done. When complete the VM may contain about 4000 lines.
In principle the DSL suffices for writing the essence of Sub-
Script programs. However, with the special syntax, e.g. for
parameter lists, n-ary infix operators, various flavors of code
fragments, specifications become considerably smaller and
these require much less parentheses and braces (which is
also important for clarity).

A special branch of the Scala compiler was modified so that
it translates the genuine SubScript syntax to the DSL. This
took about 2000 lines of Scala code, mainly in the scanner,
the parser and the typer.

7. Dataflow Programming

A relatively new SubScript language feature is dataflow,
expressed by curly arrows as seen in the Gui controller
example:

This starts with x. When x has success, y is activated with
x’s normal result value. When x terminates as a failure, z is
executed with x’s resulting exception.

Similar variations are possible for dataflow operators with
named items, so that these become analogous to a combina-
tion of match statements and exception handers, e.g.,

x ~~(b:Boolean
+~~(1:Int if i<10
Fon (0

+~/~(e:I0Exception

+~/~(e: Exception
+~/~(e: Throwable

~> vl
~> Y2
~~> y3
~> 71
~> 72
~a> 71

= O o - <

exit = exitCommand
@Qoui: {! confirmExit !}
~~ (b:Boolean)~~> while(!Db)

We could also have specified a smaller version of the
dataflow operator, that does not give a name and type to
the flowing data item:

exit = exitCommand
@Qoui: {! confirmExit !} ~~> while(!_)

Now the while in the right hand side has an underscore as
parameter; like in Scala it denotes a default parameter, and
it turns its close environment into a parameterized lambda.
The left hand operand is also a lambda, so that it has its own
result value.

The dataflow construct is a kind of sequential composition,
a difference being that it cannot become a loop.

A similar construct lets exceptions flow. E.g. in x ~/~>
y when x ends in failure (without success), x’s result is a
Failure wrapper containing either an exception or null.
Then vy is executed with the flown exception or null as a
parameter.

Such dataflow and exception flow may be combined in a
ternary operator:

X ~a> Y 4[> 7

7.1 Example: Twitter Search

8 00 Twitter Search

lambdaconf

sanchom at Mon Mar 30 16:27:43 +0000 2015:
@alexcruise The scala group @bitlit is looking for conferences in tk

Bauno at Sat Mar 28 09:29:09 +0000 2015:
We made it to #lambdaconf...eventually (@ Facolta di Ingegneria in

gicappa at Fri Mar 27 16:17:41 +0000 2015:
Heading to Bologna #lambdaconf #tomorrow

benkyrlach at Thu Mar 26 18:36:05 40000 2015:
@paf31 Totally understand. What about this? https://t.co/8fSrylc?

lambda_conf at Wed Mar 25 15:33:16 +0000 2015:
RT @mart_view_ctrl: Planning a trip to LambdaConf! S0 excited

martt_view_ctrl at Wed Mar 25 02:06:25 40000 2015:

7 tweets

Figure 3. Twitter Search application

A simple Twitter search application contains an input text
field and a result text area; when the user has changed the
content of the input text field the application starts a request
to the Twitter web service to get 10 tweets matching the in-
put text. But Twitter imposes request rate limit on its API,
and the client should not exceed this. Therefore after each
change in the text field the application waits 200 millisec-
onds before sending the request to Twitter. If meanwhile the
text field changes again, we will restart the wait. When the
input text changes while a request had already been sent and
the result was awaited, then that process is disrupted as well.

The searches may go wrong; we can (intentionally) send
an empty search string, which will result in an error reply by
the Twitter server.

A pure Scala version for the controller would contain
something like:

2015/4/19

def bindInputCallback = {
listenTo(view.searchField.keys)

val fiWait InterruptableFuture {...}
val fSearch = InterruptableFuture {...}

reactions += {case _ =>
fiWait.execute()
.flatMap {case _ => fSearch.execute()}
.onComplete{
case Success (tweets) =>
Swing.onEDT{...}
case Failure(e:Throwable) =>
Swing.onEDT{...}
} 1}

search
~~ (Ls:Seq[Tweet]) ~~>updateView(ts)
+~/~(t: Throwable)~~>setErrorMsg(t)

7.2 Implementation

Arrows with parameters are syntactic sugar, e.g.,

InterruptableFutures are a flavor of futures that can be can-
celled on demand. This functionality requires a bunch of ad-
hoc utility code in pure Scala, whereas it is supported out-
of-the-box in SubScript, backed by theory.

The SubScript version has a live script for the controller,
containing a loop of complete search sequences.

x ~~(b:Boolean)~> vyl

to~(1:Int i€ i<10)~~> y2

don (L)~a> v3

+~/~(e:I0Exception)~~> z1l

+~/~(e: Exception)~~> z2

+~/~(e: Throwable)~~> z1

desugars into

X ~~> (case b: Boolean => yl
case i: Int if i<10 ==> y2
case => y3)

+~/~> (case e: IOException ==> zl
case e: Exception ==> z2
case e: Throwable ==> z1)

live = initialize; (mainSeqg/..)...

mainSeq = anyEvent (view.searchField)
{* Thread sleep keyTypeDelay =*}
{* searchTweets «}
~~(ts:Seq[Tweet]) ~~>updateView (ts)
+~/~(t: Throwable)~~>setErrorMsg(t)

updateTweetsView(ts: Seq[Tweet]) @Qgui: {...}
setErrorMsg (t : Throwable) = Qgui: {...}

Here ==>y is sugar for =>[y].
In an expression of the form x ~~> y +~/~> z, all three
operands are lambdas, so they have their own result types.
Let X, Y and Z be the result types of x, y and z, and let
T be the most specific ancestor type of Y and Z. Then the
expression is transformed into ®

The slash and the two dots inmainseq/ . . denote a disrup-
tive loop that starts by activating 1 instance of mainSeq. As
soon as the first atomic action therein happens (anyEvent in
the search field) a next iteration of the disruptive loop is ac-
tivated. Thus if a next anyEvent arrives soon enough, before
the rest of the ongoing earlier ma inSeq instance has termi-
nated successfully, that ongoing instance is disrupted and a
new delay starts, and a new instance of mainSeq is acti-
vated, etc. The disruptive loop ends when such a mainseq
has terminated successfully.

It is also possible to use futures in the script. Suppose we
have

var xResult: Try[X] = null

do @{there.onSuccess{xResult=there.S$}}: x

then y (xResult.get)”

else z (xResult match {case Failure(f) => f
case null => null})"

def delay
def search

Future{Thread sleep keyTypeDelay}
Future{searchTweets}

And suppose an implicit conversion from futures to scripts
is in scope. Then we can use the futures as follows:

mainSeq = anyEvent (view.searchField)
delay

$ is a Try: it either holds the result value of a node
packed in a Success wrapper, or a Failure holding an
exception or null.
do x then y else z is a ternary construct meaning:
do x; after x has success y is activated; in case x ends in
failure (i.e. deactivates without success) then z is activated.
Both the then-part and the else part are optional, but not
at the same time. If the else-part is absent, do-then is a
binary sequential operator; it cannot iterate, so if it has an
iterator operand then that affects an operator such as ; or &
higher in the call graph.
Expressions of the form x ~~> y and x ~/~> y are
treated similarly.

8 This is a minor simplification. In the presented code the declaration of
variable xResult implies a sequential composition, which is in general
undesirable. This has been overcome using slightly more technical code.
Probably an alternative for this sequential composition would be appropri-
ate, e.g., a let ... in ... construct as known from functional programming
languages such as ML

2015/4/19

8. SubScript Actors

SubScript has a message handling feature to support the
specification of Akka actor behavior. E.g. the following pair
of actors would exchange some "Ping" messages, terminated
by "Stop":

class Ping(another: ActorRef) extends Actor {

another ! "Ping"
another ! "Ping"
another ! "Stop"

class Pong extends SubScriptActor {
script

live = <<"Ping">> ... / <<"Stop">>

The brackets <<....>> denote a message handler; on the
inside there is essentially a partial function, like in the usual
receive methods of actors. Multiple of such message han-
dlers may be active at the same time; these handlers are con-
sidered when Akka gives an message to the actor for han-
dling. If any such active message handler has a partial func-
tion that is defined for the message, it will handle it, and the
actor’s receive method will not be called.

Message handlers may be more complicated than the
presented ones. The general form is:

<< case p_1
case p_2

=> scalaCode_1
=> scalaCode_2

==> scriptExpr_1
==> scriptExpr 2
case p_n => scalaCode_n
>>

==> scriptExpr_n

This is much like a Scala partial function that is usually
returned by an actor’s receive method. The long arrow
with scriptExpr is new. This specifies the behavior that
holds after the corresponding message handling. Because
<< and >> act as a bracket pair, the names of parameters,
values and variables before the long arrow are available in
the scriptExpr. It may also safely use sender, which
is a local value silently copied from the class variable with
the same name.

Simpler forms are possible because of the next rules:

e The sections that are proceeded by the arrows may be
omitted.

e If there is only one case then that tag may be omitted.

8.1 Data Store example

For a more advanced example, imagine a data store with
a proxy and a backend. A client may send information re-
quests to the proxy. This sends the request on to the backend
store. The latter will reply the requested information. Based

Request
Request DetailsRequest
L > Il Store
(data, details) data
details

Figure 4. Data store with proxy

on this, the proxy sends a new request for detailed informa-
tion to the backend store. After the proxy has received this
detailed information it sends all received information back
to the original client.

In plain Scala+Akka a state machine would typically
specify the behavior of the data store proxy:

class DataProxy(ds: ActorRef) extends Actor ({

def waitingForRequest = {
case req: Request =>
ds ! req
context become waitingForData (sender)

def waitingForData (requester: ActorRef) = {
case data: Data =>
ds ! DtlRequest (data)
context become
waitingForDetails (requester, data)

}

def waitingForDetails (requester: ActorRef,
data: Data) = {
case dtls: Details =>
requester ! (data, dtls)
context become waitingForRequest

The states have meaningful names, but the control flow
may be confusing since the program seems to jump between
these states.

A SubScript solution may apply nested message handlers:

live = << req: Request

=> val client = sender; ds ! req
data: Data
ds ! DtlRequest (data)

<<
=
>>
>>
>>

dtls:
client !

Details
(data,dtls)

2015/4/19

This is shorter than the plain Scala solution. The ability to
nest message handlers is powerful, but that comes with a
price: like with regular control structures, each deeper level
makes the code more complex, in general.

With dataflow operators the code may be flattened and
shortened:

live =
<< req : Request ==> {ds ? req}
~~(data: Data)~~> {ds ? DtlRequest (data)}
~~(dtls: Details)~~> {:sender! (data,dtls):}
>>

e Timer callbacks and the aroundReceive hook call the
method t ryHandleMessage in the SVM.

Currently the third option is taken.
aroundPreStart is called by Akka when an actor starts;
it starts the actor’s lifecycle behavior within the SubScript
virtual machine (SVM):

override def aroundPreStart () {
runner.launch([lifecycle])
super.aroundPreStart ()

}

Here the message to the backend store are sent using the
? operator: in Akka this sends a message using a new, short-
lived actor, and asynchronously awaits the answer from the
addressee. The ? operator returns a future that completes
when the answer has been received. These future value
expressions are enclosed inside normal brace pairs, which
do not denote actions but just Scala values. Just like with
delay and search in the Twitter example, these futures
are converted using an implicit script. The brace pairs are
needed to parse these as Scala expressions rather than pro-
cess expressions.
{:sender! (data,dtls) :} is a tiny code fragment
that sends the data including the details back to the origi-
nal sender of the request. In a plain Akka actor sender is
a class variable that gets overridden each a new message ar-
rives. Here inside the message handling brackets, «...», that
class variable is copied into a local script variable with the
same name, so the name sender may be safely be used
later inside the message handler.

8.2 Implementation

The Akka framework provides convenient aspect oriented
programming hooks that facilitate a compatibility layer for
SubScript.

In particular trait akka.actor.Actor has methods
aroundPreStart, aroundPostStop and
aroundReceive.

SubScript Actors are implemented in a separate trait, named
SubScriptActor whichextends akka.actor.Actor
and which implements these hook methods.

Normally the SVM executes a script called from Scala in a
loop that handles call graph message synchronously in se-
quence. The loop’s body is a call to a method named
tryHandleMessage; this method may as well be called
from outside. This gives 3 options for the coexistence of
Akka and the SVM for running SubScript actors:

e There are 2 private thread to run these; these are synchro-
nized using calls to wait and notify.

® A separate SubScript process that runs in its own SVM
coordinates Akka and the other SVM

The runner is of type SubScriptActorRunner, a
trait with methods to launch and execute scripts. Its working
implementation is an object SSARunnerV1 - this executes
the SubScript scripts under supervision of Akka’s scheduler,
rather than from a simple whi 1e-loop that normally runs in
a ScriptExecutor.

The actor’s 1ifecycle scriptis:

lifecycle = live || terminate; die

This starts two processes in parallel:

® Process live is abstract in this trait; in a subclass it
should specify the behavior of the actor, such as what
messages can it handle and when.

® Process terminate is a means to terminate the actor
on demand. Internally it has an event handling code frag-
ment; this will be executed when the actor is stopped,
using the hook aroundPost Stop that Akka provides.

After either 1ive or terminate has completed, the die
process starts. Its job is to do the final clean-up: it unloads
the actor from the ActorSystem and the memory.
Whereas a akka.actor.Actor only uses the receive
method for message handling, a SubScriptActor may
have multiple message handlers active:

private val callHandlers = ListBuffer|
PartialFunction[Any, Unit]] ()

The SubScript compiler translates a message handler

<< case p_1 => scalaCode_1 ==> scriptExpr_1
case p_2 => scalaCode 2 ==> scriptExpr_ 2

case p_n => scalaCode_n ==> scriptExpr_n
>>

into the following script call:

r$(case p_1 => scalaCode_1; [scriptExpr_1]
case p_2 => scalaCode 2; [scriptExpr_2]

case p_n => scalaCode_n; [scriptExpr_n])

2015/4/19

So the parameter of this call is a partial function which re-
turns a script lambda. In case a long arrow with a
subScriptExpr is absent, null is returned.

The main task of the script r$ is to handle an event that rep-
resents a message being accepted; and then make the related
subScriptExpr happen. This requires some technical
preparation:

An annotation derives a new partial function from the
given one, by appending code that stores the returned script
lambda and causes the event to happen. This appended han-
dler is registered and later unregistered, in the same way as
a script for GUI controllers enables and disables a button.

}
}:
{. .} // empty event handling code fragment

def script r$(handler:
PartialFunction[Any, ScriptNode[Any]])
= var s:ScriptNode[Any]=null
@{val h = handler andThen
{hr => {s = hr; there.eventHappened}}
synchronized {callHandlers += h}
there.onDeactivate {synchronized
{callHandlers —= h}}
}:
{. .}

if s != null then s

there.onExclude registers a callback at a node
which executes when the node is being excluded, e.g. when
an atomic action happens in a different branch of the + oper-
ator. In this case the callback makes sure that once the script
has been canceled, any later completion of future will have
no effect.

Otherwise the completion of the future calls executeForTry

on the event handling code fragment {. .}. This hap-
pens to execute an empty code fragment, but the fragment
corresponds with an atomic action, and when that suc-
ceeds the SVM will grow and prune the call graph further.
executeForTry also sets the result value of the event
handling code fragment to the Try value that the future had
yielded.

Conversely it is possible to convert a script closure to a fu-
ture:

When a message arrives for the actor, Akka will likely
call its aroundReceive method. This first yields control
temporarily to the SubScriptActorRunner which in
turn calls t ryHandleMessage repeatedly to let the SVM
maintain the script call graph. Thereafter aroundReceive
tries the callHandlers for one that is capable to handle
the received message (by calling isDefinedAt). If no
such handler exists, the message processing falls back to the
regular receive method.

9. Interoperation with Futures

Scala’s Futures and SubScript processes are fundamen-

tally similar. They both represent a potentially time-consuming

operation that results in some value (success) or in an excep-
tion (failure). However, while a future completes once, a
script may have success more than once, and a failure may
even occur after a success, like in the ACP process 1 + a - 0.
Also, a future is in general not cancelable whereas a script
is inherently cancelable, e.g. in contexts of the operators &&,
| | and /.

It is possible to specify a future as a kind of script call in a
script expression, using an implicit conversion script:

implicit def script2futurel[T] (s: Script[T]):
Future[T] =
{
val p = new Promise[T]
val sl =
[@{there.onSuccess{p success there.S$}
there.onFailure{p failure there.
failure}

]
AkkaScriptRunner.execute (sl)
p.future

}

implicit script futureZscript[T]
(f:Future[T]): T
= @{var isExcluded = false
there.onExclude{isExcluded=true}
f.execute()
.onComplete{
case aTry if !isExcluded =>
there.executeForTry (aTry)

Here AkkaScriptRunner is much like the earlier dis-

cussed SSARunnerV1: it may execute a given script in co-
operation with Akka’s actor system. During this execution it
adds an annotation the script that registers handlers for suc-
cess and failure: on such occasions that the corresponding
values are transferred from the script to the future.
A problem with this conversion is that the script may have
multiple times success, so that the promise’s success method
may be called multiple times. Some extra logic may prevent
this, but there is anyway a kind of impedance mismatch.
Anyway we don’t know yet whether the conversion from
scripts to futures will be useful or not.

10. Performance

We measured performance of using a Sieve of Eratosthenes
application, in which each prime sieve was implemented by
an actor process. On an iMac with a 2.7GHz Intel Core i5,
the plain Scala version got a throughput of about 1,000,000
messages per second, whereas the SubScript version only

2015/4/19

got about 10,000 messages per second. The performance
penalty factor is therefore about 100. We expect to improve
performance considerably by relatively small modifications,
but we estimate that this way the gap will remain at least a
factor 25.

One reason for this can be inefficient mechanics of script
processing by the virtual machine. Currently, all the process-
ing relies heavily on message passing within the virtual ma-
chine. It is possible, that the a good fraction of such mes-
sages are "noise", meaning they don’t carry any useful infor-
mation and just throttle execution speed.

In principle it seems possible that a SubScript virtual ma-
chine follows a different execution strategy: the compiler or
VM would analyze a behavior specification and transform it
into a finite state machine representation. Then the SubScript
actors performance could much be much closer to the one of
plain Scala actors.

11. Related Work

The predecessor paper contains an overview of other lan-
guages that show some resemblance to this work. SubScript
seems to be unique in allowing for an process algebra ap-
proach to actor programming.

There are some noticeable papers that apply process alge-
bra as a theoretical underpinning to actors: [1], [5] use Pi-
calculus, and [12] applies ACP.

The parser combinators library Parboiled [13] offers more
flexibility for capturing result values than SubScript cur-
rently does. It is a challenge to bring the same expressiveness
to SubScript.

12. Conclusion

SubScript offers constructs from the Algebra of Communi-
cating Processes that apply well to reactive programming. It
helps to concisely specify internal actor behavior.

Futures may conveniently placed in SubScript process ex-
pressions. Likewise SubScript processes may be converted
into futures, but there is an "impedance mismatch". A vari-
ant of Futures that supports a kind of 1-element from ACP,
could be interesting.

Further R&D on ACP, SubScript and Actor systems could
focus on design, prototyping, performance analysis, testing
and formal reasoning.

SubScript is an open source project’. It is currently imple-
mented as a branch of the regular Scala compiler, bundled
with a virtual machine and a library for interfacing with
Akka actors and Swing GUISs.

There is a performance penalty. Whether that is a problem
depends on performance requirements, and on the propor-
tion of CPU time required for internal actions to the total
CPU time.

Rather than a branch of the Scala compiler we wish to have

9 Subscript web site: http://subscript-lang.org

a loosely coupled front end. At the time of writing this pa-
per where are therefore developing a Parboiled parser which
should produce input for the Scala compiler that invokes
Scala macros to perform some specific transformations.

13. Acknowledgement

Anatoliy Kmetyuk received a Google Summer of Code
stipend in 2014 for his work on the project.

References

[1] G. Agha and P. Thati. An algebraic theory of actors and its
application to a simple object-based language. In In Ole-
Johan DahlOs Festschrift, volume 2635 of LNCS, pages 26—
57. Springer, 2004.

[2] J. C. M. Baeten. A brief history of process algebra. Theor:
Comput. Sci., 335:131-146, May 2005.

[3] P. Ciancarini, A. Fantechi, and R. Gorrieri, editors. Formal
Methods for Open Object-Based Distributed Systems, volume
139 of IFIP Conference Proceedings, 1999. Kluwer. ISBN
0-7923-8429-6.

[4] C. Flanagan and M. Felleisen. The semantics of future and an
application. J. Funct. Program., 9(1):1-31, Jan. 1999.

[5] M. Gaspari and G. Zavattaro. An algebra of actors. In
Ciancarini et al. [3]. ISBN 0-7923-8429-6.

[6] H. Goeman. Towards a theory of (self) applicative commu-
nicating processes: A short note. Inf. Process. Lett., 34(3):
139-142, 1990.

[7] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ac-
tor formalism for artificial intelligence. In Proceedings of the
3rd International Joint Conference on Artificial Intelligence,
IICATI’ 73, pages 235-245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

[8] C. Hoare. Communicating sequential processes. ACM Com-
puting Surveys, 7(1):80-112, 1985.

[9] R. Milner. A Calculus of Communicating Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1982.

[10] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, patt i. I AND II. INFORMATION AND COMPU-
TATION, 100, 1989.

[11] A. van Delft. Dataflow constructs for a language extension
based on the algebra of communicating processes. In Pro-
ceedings of the 4th Workshop on Scala, SCALA *13. ACM,
2013.

[12] Y. Wang. Fully abstract game semantics for actors. CoRR,
abs/1403.6563, 2014.

[13] P. Wills. No more regular expressions.
London, 2014. Skills Matter.

Scala Exchange,

2015/4/19

