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Introduction: 
By Rachel Norman and Carron Shankland: 
 
 
The aims of the workshop were: 
1) To bring together people working on the relatively new process algebra 

approach to biological problems to address common problems. 
2) To bring the process algebra approach to the attention of researchers who have 

not seen it before 
3) To find common ground between the PA and CA approaches to see if the two 

approaches can inform one another. 
4) To encourage the flow of information between the groups and to form new 

collaborative links. 
 
These objectives were met very successfully. We succeeded in bringing together a 
group of people from diverse backgrounds who would otherwise not have got 
together. We were overwhelmed by the number of people who wanted to take part in 
this workshop. There were 58 of us in the end from a mix of biology, computer 
science, mathematics, physics and engineering departments. 
Thank you to the invited speakers who covered a range of topics on the first day and 
gave us a flavour their research areas. The slides for some of those talks are appended 
to this report. 
 This document also includes reports from the break out sessions which took 
place on the second day of the workshop and thanks go to the rapporteurs for 
providing those. It is amazing that although the groups all met independently, the 
same key issues recurred in all of the discussions. The second day finished with a 
lively and I think optimistic discussion about future collaborations between theoretical 
biologists and computing scientists. 
 It just remains for us to thank everyone for participating so willingly and to 
wish you well in any collaborative links you may have made. We must also say a big 
thank you to Tracey Dart for helping with the organisation and, of course to  NERC 
and EPSRC for the funding, without which the workshop would never have taken 
place. 
 We’ll see you at the next workshop, several publications down the line! 
 
  
    Rachel and Carron. 
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Cellular Automata and Process Algebras: 
 
Chair: Rachel Norman 
Rapporteur: Glenn Marion 
 

The remit for this session was to explore the link between cellular automata and 
process algebras. The resulting discussion focused on what benefits the tools methods 
and techniques of process algebra could bring to modelling biological systems. This 
reflected the makeup of the group but also the fact that cellular automata have been 
widely and successfully employed as a modelling tool in ecology, epidemiology and 
biochemistry, whereas the application of process algebras in these fields has been 
more limited (Sumpter et. al, 2001; Sumpter, 2003; Norman and Shankland, 2004).  
The session generated a number of important, but essentially unresolved questions, 
including the following. How powerful are the analytic tools and methods of process 
algebra in comparison with other methods? Can a process algebra be written for the 
types of cellular automata models used in the biological sciences? What features 
would such an algebra have and what would be its computational limitations? Will a 
process algebra representation of an existing cellular automata model simply be an 
alternative description of the model? In other words is it worth developing a process 
algebra for cellular automata in terms of the new insights, results or technical benefits 
it may offer? Before addressing these questions we introduce cellular automata and 
process algebras and discuss some existing techniques associated with them. 
 

In the context of modelling biological systems we use the term cellular automata to 
refer to discrete-state space stochastic, typically Markovian, processes (chains in 
discrete time) rather than deterministic cellular automata (Wolfram, 1983). Some 
biological applications are best modelled in a non-Markovian manner (i.e. non-
exponential inter-event times), and many require stochastic models with some spatial  
structure (Tilman and Kareiva, 1997) which may be either continuous (Bolker and 
Pacala, 1997) or discrete (e.g. meta-populations). Although sometimes amenable to 
direct solution, such models are typically intractable, however a range of techniques 
which provide approximate results and analytic insights are available. One example of 
direct solution for simple models is the analysis of the Chapman-Kolmogorov  
equations, for example to obtain closed form expressions for the equilibrium or quasi-
equilibrium distributions (see e.g. Cox and Miller, 1965; Renshaw, 1991; Mckane et 
al., 2004). Approximate results are more routinely obtained for example, using 
techniques such as stochastic linearization (Bailey, 1964), spectral analysis (Nisbet 
and Gurney, 1981), and spatial (Bolker and Pacala, 1997; Keeling et al., 2000) and 
non-spatial (Whittle, 1957; Isham, 1991) moment-closure. The simplest forms of 
closure are mean-field like approximations that ignore both spatial and temporal 
fluctuations, however, much recent attention has focused on approximation of higher-
order statistics and their impact on first-order quantities such as expected population 
size. Simulation and perhaps numerical solution are often used to assess the validity 
of such approximations, or to explore model properties where no reliable analytic 
results are available. An aspect of Markov process modelling which is increasingly 
receiving attention is the estimation of parameter values from observed data, for 
example on the progress of an epidemic (O'Neill and Roberts, 1999) . 
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Process algebra is a term which is used broadly to mean a formalism which 
systematically describes the structure and behaviour of systems in a modular and 
hierarchical manner. These key features are often expressed as compositionality 
meaning the ability to model a system as the interaction of subsystems, and 
abstraction in which unnecessary details of components are disregarded when 
defining how they interact. The overall goal is to facilitate the modelling of complex 
systems and as such may prove to be an extremely valuable tool in understanding 
biological systems.  Historically process algebras have developed as formal 
descriptions of complex computer systems, especially those involving 
communicating, concurrently executing components. Simple examples such as the 
Calculus of Communicating Systems CCS (Milner, 1989) do not account for time 
explicitly, whilst synchronous schemes such as SCCS (Milner, 1983) assume events 
occur deterministically at each tick of a global discrete-time clock. Stochasticity has 
been introduced into these discrete time algebras for example the model underlying 
Weighted Synchronous Calculus of Communicating Systems WSCCS (Tofts, 1992) is 
a discrete time Markov chain. More recently stochastic process algebras such as the 
Performance Evaluation Process Algebra PEPA (Hilston, 1996) based on continuous 
time Markovian (or non-Markovian) processes have been developed. The successful 
use of process algebra in reasoning about concurrent systems is based on three 
approaches: (i) mathematical or probabilistic analysis; (ii) numerical solution; and (iii) 
simulation. One clear benefit to the biological modelling research community of 
using process algebras are the software tools available for such systems ( see e.g. 
PEPA http://www.dcs.ed.ac.uk/pepa/ and WSCCS Probability Workbench 
http://www.chris.scs.leeds.ac.uk/).  Such tools enable models to be specified using an 
appropriate algebra and then simulated. Additional functions such as graphical output 
of simulation results, model checking and theorem proving may also be supported. 
 

The analytical techniques applied to process algebras touch on a range of methods 
from discrete mathematics and applied probability (Bergstra et al., 2003) which may 
be of benefit to the biological modelling community.  A key area of research is the 
simplification of Markov processes via the aggregation of states. As is well known the 
time taken to transit a succession of states, for example in an age-structured model, 
may be non-exponential. An aggregated process may not therefore preserve the 
Markov property, however the condition of lumpability ensures that it does. Process 
algebra methods have made use of such conditions to derive aggregated models which 
retain essential features of the underlying Markov process. Recently efficient 
algorithms have been introduced to achieve this form of model simplification 
(Gilmore et al., 2001).  Aggregated models are usually faster to simulate and may also 
be more amenable to analysis than their parent processes.  Another interesting 
development is the application of Markovian analysis to non-Markovian continuous 
time stochastic process algebras (Clarke and Hillston, 2002) and the possibility of 
aggregation in such models (Bravetti and Gorrieri, 2002). 
 

Although both the process algebra and cellular automata research communities use 
some of the same underlying models (e.g. Markov processes) the approach and 
emphasis of each is different. For example in terms of model simplification, process 
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algebra research focuses on aggregation methods, whilst the emphasis of the 
biological modelling community is on deriving equations, possibly via moment-
closure, for the evolution of global properties (e.g. mean population density). 
Recently simple approximations based on difference equations describing mean 
population levels have been derived from Markov chain models expressed in terms of 
the WSCCS process algebra (Sumpter et al., 2001; Sumpter, 2003; Norman and 
Shankland, 2004).  It should be possible to obtain similar results for continuous time 
Markov processes which if extended to higher-order (i.e. beyond the mean-field) 
would lead to general closure approximations for process algebra models.  An 
exciting possibility would be the automated derivation of such approximations based 
on the underlying process algebra description of the model.  Analytical methods used 
by the process algebra community such as aggregation may also prove useful in the 
context of modelling biological systems. Moreover, application of such theoretical 
results may not even require models to be explicitly formulated as process algebras. 
 

Returning to our initial questions we can now provide some tentative answers.  The 
analytic tools associated with process algebras are interesting and powerful, however 
it remains to be seen whether such methods can be widely applied in the modelling of 
biological systems. Given that process algebras such as PEPA implement continuous 
time stochastic processes it should be possible to describe many biologically inspired 
models using existing process algebras. What is less clear are the practical difficulties 
involved in doing so and the computational problems that may arise for more complex 
(e.g. spatial) models when using software designed to implement computer science 
models. Although it is difficult to assess the value of using process algebras to model 
biological systems we have discussed several reasons to be positive. In addition recent 
developments in the field of process algebra have been motivated by the need to 
design and operate increasingly autonomous computing networks which are much 
closer in spirit to biological systems than their predecessors. For example the 
relative importance of endogenous and exogenous factors in natural systems is 
mirrored in the balance between local autonomy and global control in the design of 
modern computational networks. It is therefore anticipated that the cross-fertilization 
of ideas and techniques between process algebra and cellular automata modelling 
will be of considerable benefit to both biology and computer science.   
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Modelling Techniques  
 
Chair: Mike Holcombe 
Rapporteur: John Ollason. 
 
As a preliminary to the discussion each member introduced him/herself, and gave 
some information about her/his interests. 
 
The first subject to be discussed addressed the need to assert formally the function of 
a bio-mathematical model in terms of defining the state variables that the model 
would represent, the form of the output of the model, and the form of the input. We 
agreed that far too many models were constructed without a clear explanation of what 
they had been constructed for. 
 
It was generally agreed that mathematical ecological models ought to have properties 
that did map on to the biological properties of the entities that the models purported to 
represent, and there was some discussion of the different importance placed on the 
Lotka-Volterra n-species models by ecologists---Not very interesting because they do 
not plausibly represent realizable ecological systems, and cannot be parameterised---
and bymathematicians---Inherently interesting from a mathematical perspective 
irrespective of their biological implausibility.  
 
The group agreed that worthwhile ecological modelling ought to be rooted firmly 
within the biological properties of the system being modelled even at the expense of 
mathematical elegance.  
Discussion moved on to explore strategies for abstracting the significant aspects of 
biological systems allowing the development of models that omitted insignificant 
detail, and this opened a number of issues that were discussed; these fell under the 
headings enumerated below:  
1. Lack of data in the explanans.   
2. Lack of formal methods for determining the set of properties of system to be 
included in the model. 
3. Lack of agreement about how the modelling process should be managed. 
4.  Lack of general methods to determine the most effective ontology to be 
represented by the model. 
5.  Need for Structural validation of the models, and validation of a model against 
data. 
 
Dealing with headings in more detail:  
 
1. Lack of data 
We agreed that it is usually not worthwhile to develop complex models to explain 
limited sets of data, because excessive proliferation of parameters can lead to the 
model's being little more than a re-description of the data in the explanans. Lack of 
data also limits the scope for the model to predict the biology, because the only 
predictions that are testable would be those that predicted large changes in the 
modelled system and such changes may be unlikely to occur frequently in natural 
systems. 
 
2. Lack of formal methods for determining the important properties of the 
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system to be represented by the model.  
As a heuristic we agreed that a sensible strategy was to start by making the model as 
simple as possible, even if this limited the domain of its applicability; then to 
elaborate the model to represent more and more details of the system. The degree to 
which such elaboration was desirable or achievable is necessarily limited by the 
constraint of limited data discussed above. 
 
There was some discussion of potential and the limitations of formal sensitivity 
analysis, but it was recognized that the approach though attractive, is really only 
applicable in extremely simple cases. 
 
It was generally agreed that informal sensitivity analysis could be used by exploring 
the parameter space stochastically. Suppose that there are data derived from a system 
that imply that the system is locally stable, and that each parameter of the system is 
known only approximately, but that lower and upper bounds can be guessed, an index 
the stability of the model with respect to the parameters can be determined by 
exploring the properties of the system in response to randomly selecting sets of 
parameters from the known potential ranges and determining empirically, by 
simulation,  the proportion of the parameter space that yields stable model behaviour. 
 
3. Lack of agreement about how the modelling process should be managed. 
 
In the elaboration of simple models to complex ones, at each stage a variety of 
additional details could be added, but usually, by intuition, a single one is added, 
testing takes place, and if an improvement in the performance of the model is 
obtained, the revised model replaces the former version. Few modellers treat the 
development of models as a multifurcating process, such that at a single point in the 
development all the conceived off variants are explored, and development takes place 
in an evolutionary way, rather than as single lineage of production. Strategies are 
required that enable the development of models to take place in a more exhaustive 
fashion than the current intuitively based linear strategy permits. 
 
4. Lack of general methods to determine the most effective ontology to be 
represented by the model. 
 
We agreed, implicitly, at least that the ontology of the model should map closely with 
the ontology of the system represented by the model. It is well known that 
representation of continuous processes in time and space by injudicious choices of 
scales of discretization can lead to very misleading predictions. Few modellers seek 
either to validate choices of discretization or to explore the dynamical consequences 
varying the scales of discretization. 
 
5. Need for structural validation of models  
 
We suggest that it is necessary to validate models in a variety of ways: 
Objective methods should be used to test the models for internal consistency and we 
are (now) aware that process algebras may provide methods for carrying out such 
tests for some models. We also need to be able to satisfy ourselves that the realization 
of mathematical models in software is carried out without error. We agreed that one 
approach to this form of validation would be to encode the realization in two ways, 
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for example by generating analytical solutions for differential equations, and 
comparing the results with those obtained by solving the same differential equations 
numerically. If the results of the two different realizations tallied, it would be 
reasonable to assume that they both represented the mathematical model. 
  
The discussion led us to make a survey of the forms of the modelling paradigms 
found valuable by the members of the group. We devised a series of quasi-alternatives 
and asserted our preferences.  
 
The properties of models included the following: 
 
Individual-based (IBM)   Population 
Spatially explicit    Aspatial 
Deterministic     Stochastic 
Discrete     Continuous 
Computational     Analytic 
Rigour      Pragmatic 
 
After some discussion we felt that it was not practicable nor really desirable to do 
more than explore these possible methods of classifying models. It was not possible to 
assign any given model to one or other of the each of the set of alternatives, because, 
for example, IBMs by definition involve discrete elements, individuals, but the 
dynamics of the individuals themselves can evolve in continuous time and space. 
 
The final part of our discussion was concerned with the use of IBMs to represent 
individual agents and the identification of the necessary components that an IBM 
must possess to be an agent. We concluded:  
1 Agents must possess objectives. These might be constant or alternatively they 
can vary in response to endogenous or exogenous states, and these objectives 
maximise utility balancing the benefits and costs of behaviour measured in some 
objectively defined currency. 
2 The behaviour of agents is determined by rules that are applied to satisfy their 
objectives. 
3 The properties of a population of agents arise can be the consequences of each 
individual agent pursuing its own objectives, but in the presence of other individuals 
pursuing theirs. 
 
Using agents of this kind it is possible to envisage communities of many individuals, 
belonging to more than one ecological category with members of a category 
responding in one way to members of its own category and differently towards 
members of another. 
 
For such modelled ecologies to be of interest methods from traditional descriptive 
ecology could be used to describing the time course of the evolutions individuals 
within the simulated topography in which they occur. 
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Biological Systems: 
 
Chair: Chris Gilligan 
Rapporteur: Ben Bolker 
 
 
As with many of the group discussions, the group's focus drifted from the details (or 
even the generality) of biological systems toward modelling issues. However, we did 
attempt to define what some of the big questions are, and to come up with a (very 
incomplete) list of biological systems of interest.  
"Big questions" can be defined in terms of classical mathematical criteria: how can 
particular systems be described in terms of invasibility, persistence, stability, 
resilience, etc.?  A complementary view uses functional or biological descriptors 
such as biodiversity, evolutionary dynamics, or biological "function" (often 
defined as the productivity of goods or ecosystem services). Our primary example, 
which we considered throughout our discussions, was microbial communities.  
Microbial communities, either free-living in terrestrial or aquatic environments or 
symbiotic within other organisms (and spreading among hosts according to 
epidemiological rules), are a particularly rich source of biological questions and 
modelling challenges.  They are extremely important to society; they are complex 
interacting systems or networks like macroscopic communities and ecosystems; they 
share characteristics with within-organism biochemical and physiological networks; 
and even with modern molecular tools, they are largely hidden from direct 
observation, making modelling critical.  We also, of course, cited a number of other 
biological systems such as insect societies; cell networks; the slime mold 
Dictyostelium; human behaviour and its interaction with biological and economic 
systems, e.g. through polluting activities; terrestrial plant communities; and animal 
behaviour. 
 
We next considered four major technical issues in biological modelling: stochasticity, 
spatial processes, temporal processes, and estimation and testing. 
 
1. Stochasticity:  
There are many semantic issues surrounding stochasticity, but the main point we 
made was that large amounts of stochasticity are ubiquitous in biological systems: if 
not in the obvious within-system variability of ecological and epidemiological 
systems, then in the more subtle genetic and environmental variation characteristic of 
physiological systems, which are often neglected when these systems are studied 
under controlled conditions.  Models of biological systems should take care to 
distinguish among different modes of stochasticity (demographic vs. environmental, 
observational, parametric, uncertainty, etc.). 
 
2. Spatial Processes: 
Space can be modelled in many ways ranging from a simple random graph or patch 
model to a fully structured spatial network.  We asked if the importance of space may 
have been oversold: what fraction of the effects attributed to explicit spatial structure 
can be captured by simpler models that allow for stochastic variation from place to 
place, without incorporating detailed information on topology and distance? 
 
 



 12 

3. Temporal Processes: 
Despite repeated criticism, the overwhelming majority of biological models consider 
equilibria and neglect transient behaviour, including responses to abrupt disturbance 
or change.  In addition, few models consider long-term evolutionary or parametric 
change in biological systems.  One mitigating factor is that, at appropriate scales of 
resolution, even a highly dynamic system (e.g. the influenza-animal-human 
epidemiological system, which undergoes annual fluctuations in incidence as well as 
annual and longer-term changes in genetic properties) can be understood as having 
some constant properties (e.g. the average annual incidence): as always, careful 
consideration and definitions of scale are vital. 
 
4. Estimation and testing: 
Awareness of the importance of parameter and model testing is growing, but there is 
still great scope for improvement and dissemination of appropriate methods.  
Classical and novel approaches for estimating parameters, testing hypotheses, and 
selecting models of appropriate structure and complexity are percolating from 
Bayesian and frequentist schools of statistics into the realm of mathematical biology.  
So-called "out-of-sample" predictive ability, the capability to predict novel data that 
may have unrecognized differences from the data used to calibrate a model (cf. #1 
above), is rarely considered when challenging models with data. 
 
Lastly, we considered some general cultural issues.  Most of the discussants were 
traditional mathematical ecologists or epidemiologists, and stressed the importance of 
keeping models simple, partly because of computational constraints but also for the 
less-recognized constraints of data availability and understanding. 
Our concerns may simply represent conservatism – the artisan's lament in the face of 
industrial processes that will change the way we model, trading quality for quantity – 
or they may represent valid cautions from those who have seen simplistic approaches 
to complex systems fail in the past. 
Throughout this debate, it is important to emphasize the culture of modeling, 
especially in insisting that modelers provide appropriate documentation (metadata) to 
make their models honest, repeatable, and extensible. 
 
We finished by (briefly) concluding that, within the areas of interest and culture 
discussed above, computer scientists can provide two broad classes of benefits to 
mathematical biology. First, methods such as process algebra may contribute new 
 insights on classical problems such as (e.g.) the persistence of pathogens in stochastic 
systems.  Second, new modelling platforms, software engineering techniques, and 
algorithms can assist modelers in developing new and more complex models of 
biological systems, although always subject at some level to the constraints of data 
and understanding. 
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Commonality and Abstraction 
 
Chair: M Calder. 
Rapporteur: Carron Shankland 
 
The group included a number of computer scientists, with expertise in process algebra 
and formal methods, and in use of genetic algorithms to solve optimisation problems 
and the analysis of those genetic algorithms. There were also a number of 
mathematical ecologists, with expertise across a wide range of application areas 
(sexually transmitted diseases, population dynamics, host-parasite systems, heathlands 
under climate change) and in using a variety of modelling techniques (stochastic 
modelling, genetic algorithms). Particular interests lay in incorporating spatial 
information into the model, in the problems of scale (particularly relevant to this 
discussion group), and in the way behaviour of individuals and the environment feed 
into population dynamics. The group also included a civil engineer, creating 
individual based models of rivers and estuaries, and water treatment plants. 
 
The remit of the group was to consider abstraction, or trying to identify generic 
structures and principles. Our supposed aim was to identify common approaches 
amongst the process algebra community to common biological features, drawing on 
the experience of the cellular automata researchers. We successfully tackled the first 
question (of abstraction), but the time available and the makeup of the group did not 
allow the second question to be tackled. 
 
The main questions we asked were: 
 What do we want to model? 
 What questions do we want to ask of our model? 
We considered these as fundamental, and only once these have been answered can we 
move on to the technical question of how the model is constructed and what 
techniques might be used to prove properties of the model. 
 
The discussion ranged across the modelling processes. Particular issues which came 
out were:  
What should be the level of detail included? 
 
The main worry here was about the conflicting constraints of making the model 
tractable, while still maintaining an appropriate level of detail to allow the pertinent 
questions to be asked (and answered with some degree of reliability). Particular 
concerns were that the model might be constructed in some way as to skew the 
results. 
 
How tractable is the model? 
A complex model which cannot then be analysed is almost useless, although it was 
acknowledged that the modelling process itself can lend a deeper understanding of the 
system under investigation. 
 
Start simple! 
It was agreed that the appropriate place to start when constructing a model was with 
the simplest possible model, and to then add more complexity as required.  This 
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allows a high degree of understanding of what is actually being written from the 
outset, rather than creating a complex model initially which may be difficult 
to fully comprehend, and therefore impossible to validate. It was considered 
impossible to have one single model in which all possible questions could be 
answered. 
 
 
Compare with data! 
Validation of the model is essential, i.e. comparing the behaviour of the model with 
the real world data to try to match the two. Having constructed a model, sensitivity 
analysis could be carried out,  i.e. the process of adding more detail, or swapping one 
component with another, and comparing the results with those from the previous 
model (or with data).  The use of modelling to guide experimentation was considered 
useful. 
 
The group also produced a list of the special skills or techniques that computer 
scientists might bring to bear on modelling of biological systems. 
 
Distributed systems 
Computer scientists are used to dealing with such systems, i.e. those which are 
composed of a number of individually operating parts, usually where the parts are 
physically separated (although connected in some way), and in which there is 
typically no overall control, but instead the system behaviour emerges as a result of 
the behaviour of the individual components. 
 
Regular topologies 
In relation to the previous point, the distributed systems are usually structured in some 
regular fashion, so the individual components may all be connected to their 
neighbours in a particular fashion (e.g. a ring or star network). This was 
acknowledged to be somewhat artificial when considering biological modelling, 
although cellular automata are an example of a regular topology. 
 
Evolving topologies 
Increasingly, computer systems are in fact connected to each other in ways which may 
change over time, and the components are built to adapt to changing connections 
between them and their neighbours. It was felt that some of the techniques being used 
in emerging network technologies (autonomous systems) might be applicable to the 
biological situation. 
 
New operators 
Computer science, particularly formal methods, has been adept at defining new 
operators (constructs) to allow situations to be described. For example, certain basic 
operators are common to all process algebras, such as choice (deterministic and 
nondeterministic), sequencing of actions, communication between processes 
(individuals) and composition of processes (usually in parallel); however, there are 
many different flavours of process algebra which introduce new operators specialised 
for a particular application area.  It was felt that there may be a contribution to be 
made in defining new operators for the biological setting. 
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State equivalence 
As already discussed, tractability was a particular issue of modelling. If the model has 
so many states it's impossible to analyse, or even to simulate, then a means must be 
found of simplifying the model to reduce the state space, increase tractability, but 
without sacrificing accuracy. This is a problem which has faced computer modelling 
in the past. One method developed to deal with this is the use of relations (typically 
equivalence relations) to allow states to be grouped together and therefore treated as 
the same for analysis purposes. This was referred to by the mathematical ecologists as 
aggregation.  
A particular situation in which this problem arises in computing is in model checking. 
While one commonly used approach is to use suitable abstractions to equate states, an 
alternative is to use a different analytical technique to demonstrate the validity of the 
property being investigated, in particular, the use of theorem proving techniques was 
discussed. Since theorem proving usually concerns symbolic states this allows the 
state space to be more tractable; however it was acknowledged that theorem proving 
typically needs a large investment in the initial set up, and also requires a fairly 
sophisticated user to prove the desirable properties. The use of induction techniques 
might be possible to gain large scale results (cf. the VeriScope project 
www.dcs.gla.ac.uk/research/veriscope/). 
 
Relations between structures 
Related to the above point. The semantics of a model is described by some 
mathematical structure. It is useful to be able to relate one structure to another for two 
reasons. One is the ability to group states together in the same structure, to make the 
structure more manageable in some sense (as above). The other is the ability to relate 
the states of one structure to those of another. This might be useful for example if one 
structure describes a more operational view of a system while the other describes a 
more abstract view of the system (e.g. a desirable property to be proved). This may 
also be the case if e.g. one view is described using process algebra and the other is 
described using a language with a higher level of abstraction, such as a logic. 
 
Process abstraction 
A fundamental skill in formal methods is the ability to take a complex behaviour or 
process and simplify it. The idea is to capture the essential details of the process, 
making as simple model as possible, while ignoring details which are not relevant to 
the particular questions being asked, which would, if added, cause the model to be 
unnecessarily complex. 
For example, a useful abstraction is discretisation, in particular, discretisation of time, 
but does this change the fundamental behaviour of the system? Similarly, it is  
common to discretise the events of a system. 
 
Algorithmic behaviour 
A function can be described in two ways: 
 definitional, or describing what is being computed 
 algorithmically, or describing exactly the steps required in order to 
 carry out the computation. 
Computer Science has many languages to allow the algorithmic description 
of processes, and computer scientists are good at extracting the steps of 
a process. 
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Modelling software and final thoughts 
 
Chair: David Sumpter 
Rapporteur: Carron Shankland 
 
This session was attended by all participants. 
 
The main question posed by the chair was: 
Is it possible to develop a software tool in which all biological systems could be 
modelled? 
 
Key to this was an unambiguous, generic, modelling description technique. 
 
To focus the meeting, participants contributed their experience with 
particular modelling tools.  The tools used could be grouped into various 
categories: 
 
Analytical/numerical/mathematical programming 
 mathematica 
 maple 
 matlab 
 xppaut (for solving differential equations) 
 stella (for solving differential equations) 
 madonna (for solving differential equations) 
 
statistics and data handling 
 R 
 S+ 
 Neural Nets 
 Genetic algorithms 
 
simulation 
 swarm 
 repast 
 starlogo 
 state flow (in Matlab) 
 
cellular automata 
 IP systems 
 s3 
 
programming 
 fortran, C, java, ... 
 
interface tools 
 systems biology workbench 
 
model builder 
 simile 
 Ecell 
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State space generator/process algebra 
 SPIN 
 Probability workbench 
 
 
--- 
The question is: what are the particular advantages (or disadvantages) of any of these 
tools? 
 
The problem with model building tools is that there was a basic distrust of  what's 
going on behind the scenes. It was generally felt that it might be easier to program the 
mathematics directly. However, some of the tools mentioned above have the ability to 
output a mathematical model (although the modelling interface is e.g. graphical), 
which allows confidence to be gained in the model. 
 
Testing was also an issue. In general, even if you've written the software yourself, 
how can you trust it? A particular example given was that of errors in Maple (where 
the wrong solutions to equations were generated). This may be a result of using the 
algorithms incorrectly (e.g. in an inappropriate parameter space). This highlighted the 
need for a tight specification of the parameters and constraints of particular 
algorithms and solutions. 
 
It was felt that the more complex the model, the harder these errors would be to 
detect. It was suggested that a solution might be to code everything twice; however, 
there is no guarantee that the same errors might not be repeated, even if a different 
language or modelling tool were used. 
 
Many of the participants had in fact built up their own libraries of routines and 
algorithms over a number of years, and therefore were reasonably confident in their 
correctness. 
 
A particular bugbear was the problem of reproducibility. Everyone had read papers in 
which insufficient information was given about the methods used (both the algorithms 
and the input data) to achieve results, and therefore it was seldom possible to  
reproduce results. The more common use of electronic appendices supplementing 
published material might be a way of addressing this.  This is an intellectual property 
rights issue however. The general feeling was that while it was acceptable to release 
your data in such a way, no one wanted to release their code. That said, the algorithm 
was the important part, rather than the particular implementation details. (However, 
this comes back full circle to the question of how to be sure that the algorithm is 
correctly implemented.) 
It was also acknowledged that credit was often not given for releasing data sets.  It 
was felt that it might be good to follow the example of the molecular biology 
community in this respect, particularly the freely available data in GenBank. 
It was reported that in future it may be a funding council requirement to release data. 
 
Finally, a possible solution to some of these problems is to perhaps get the computer 
scientists to write the code (which assumes they know how to do it!). There was a 
good discussion about whether or not this was a worthwhile thing for the computer 
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scientists to do in research terms. While it might be interesting collaboration, simply 
programming might not be a publishable activity for computing science. However, the 
difficulties of modelling are certainly worth publishing.  This is really a UK RAE 
based issue, since there is huge pressure to publish.  Opinion was divided on this 
matter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


