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1 Introduction 
Robustness is a relatively new research topic. It got into the focus of scientific 

research with the advent of systems biology considering biological systems and 
processes in a holistic perspective.  In the age of molecular biology the 
investigation of  properties of  bio-molecules  scarcely offered any chance to truly 
understand  the essence of biological robustness, neither of  biological systems 
nor of biological processes.  

Although models of  heritage bio-molecules, nucleic acids and proteins, have 
been developed that allowed in principle to understand cellular processes such as 
replication, transcription, and translation, proof reading, and DNA repair, these 
models belong to some kind of physicochemical biology rather than to the true life 
science, systems biology, with its branch of behavioural biology.  In particular, 
Robustness of bio-molecules in molecular biology is sometimes confused with 
micro-mechanical rigidity. 

The sheer complexity of heritage bio-molecules is already a hint to one of the 
prerequisites of robustness. Robustness requires a minimum of complexity. Robust 
biological entities consist of many (heterogeneous) interacting components. They 
have modular structure or hierarchical organization. One of the current research 
directions considers Robustness an emergent phenomenon in complex systems. 
Another important prerequisite of Robustness is variability of the entity and its 
components. 

Robustness is sturdiness versus perturbations, internal (mutations) and 
external (stress) perturbations. Robust systems escape damage or even extinction 
in virtue of their variability and their  capability of compensation and reparation, i.e. 
by virtue of their adaptability and evolvability.  

Robustness is a rather multifaceted phenomenon. This Survey is to show 
many of its aspects. There is, however, no warranty whether or not this description 
is complete and exhaustive. Also, it is merely a matter of taste to say that there is 
not any definition of Robustness or that there are too many. There are serious 
attempts to grasp as many as possible of the aspects of Robustness in one 
generally valid definition. Besides, however, there are many very specific 
definitions that concern just a particular biological phenomenon. 

Several principal problems still remain without answer and are subject to 
current robustness research. What are the organizational principles that 
characterize highly robust systems and what are the costs of their realization? How 
is the robustness of a system related to evolvability, adaptability and the systems' 
degree of fitness? [1].  

Analysing biological strategies of Robustness may guide the design 
processes of non-biological systems especially in engineering applications [1]. 
Impact assessment is an important integrative part of a project on Nature-inspired 
Smart Information Systems. It is certainly wise to try incorporation of robustness 
features into devices or algorithms one or several at a time rather than all of them 
simultaneously, to see what happens, and to decide on next steps of design. 

1.1 References Chapter 1 
[1] Hoffman, S. Introduction to Robustness of Biological Systems. [web page] Oct 2007. URL: 

http://www.physcon2007.agnld.uni-potsdam.de/MS_IS/MS25/MS_hoffmann.pdf [Accessed 3 Oct 2007] 
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2 Natural and Artificial Robustness 

2.1 Robust Natural Systems 
Robustness of Natural Systems (robust versus perturbation by the external 

and internal environment) is one of their most remarkable properties. Examples of 
robust natural systems are the immune system, homeostasis, blood circulation, 
heartbeat,  respiration, metabolism. As a consequence, organisms incorporating 
these systems are also robust. What do these systems have in common as a 
tentative source of their common robustness? They all came into existence by 
evolution. Evolution, as a trial and error process by mutation and selection of 
species in a population, makes survive organisms with advantageous system 
mutants and makes those with disadvantageous ones die out. Sufficiently fast 
propagation of a species is a major selection advantage since it guarantees rapid 
access to nutrition and rapid occupation of living space. Another major selection 
advantage is robustness to be viable and remain alive long enough to propagate. 
Seen from this perspective, robustness is a prerequisite of survival and long term 
existence. Non-robust systems are failed attempts of natural evolution; they have 
died out and do not exist any more. From this perspective, evolution is the reason 
of robustness. Nevertheless, Nature might have invented several different 
mechanisms to maintain robustness.   

2.2 Robust  Artificial Systems 
When trying to understand robustness of Natural Systems to transfer their 

mechanisms of robustness to Artificial Systems it is certainly a good idea to survey 
available definitions of the notion of Robustness. Unfortunately, different definitions 
of robustness, available so far, do not so much reflect different mechanisms but 
rather refer to the particular case of application in an artificial system. Even a 
single mechanism of robustness is difficult to understand and even more to imitate 
or implement in a Nature-inspired artificial system since robustness of natural 
systems is the result of an evolutionary design rather than the result of a rational 
design. Moreover, in these definitions, inspiration from Nature in robust artificial 
systems is not always obvious. 

2.3 Definitions of Robustness 
Let us have a look at definitions of robustness available in the Web.  

Robustness is 
 

• the property of being strong and healthy in constitution  
• the characteristic of being strong enough to withstand intellectual challenge; 

'the lack of robustness in the findings may be due to the small size of the 
sample' [2] 

• In the context of computer software, robustness is the resilience of the system, 
especially when under stress or when confronted with invalid input. For 
example, an operating system is considered robust if it operates correctly 
when it is starved of memory or storage space, or when confronted with an 
application that has bugs or is behaving in an illegal fashion - such as trying to 
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access memory or storage belonging to other tasks in a multitasking system.  
[3] 

• The degree to which a system or component can still function in the presence 
of partial failures or other adverse, invalid, or abnormal conditions.  [4] 

• Messages are considerably less affected by component failures than direct 
calls between components, because messages are stored in queues and 
remain there until processed appropriately. Messaging is similar to transaction 
processing, because message processing is guaranteed. [5] 

• A measure of how sensitive a particular method is to violation of its 
assumptions. [6] 

• Robustness defines the ability of the numerical method to provide a solution 
despite variabilities in the initial solution and control parameters. This 
incorporates issues of fault tolerance. Generally, robustness is achieved at the 
expense of accuracy. [7] 

• The condition of a product or process design that remains relatively stable, 
with a minimum of variation, even though factors that influence operations or 
usage, such as environment and wear, are constantly changing. [8] 

• Dependability of a system, product, or process to continue operating well even 
though conditions are constantly changing. [9] 

 
As mentioned above, these definitions do scarcely give any clue on how 

robustness can be obtained in artificial systems (devices or computational 
algorithms) by Nature-inspired reasoning since they do not refer in any way to 
mechanisms of robustness in natural systems. Nevertheless, they have been 
quoted here since they at least provide an impression of how broad the meaning of 
the notion of Robustness is. 

Clearly, extensive reasoning on mechanisms that render a system robust is 
needed. Some elements of these mechanisms that might be suspected to play a 
role in ascertaining and maintaining robustness are Fault Tolerance, Redundancy, 
Feedback Loops, particular Network properties, such as scalability, Regeneration, 
Self-healing and Self-repairing properties. Of course, thorough studies of robust 
natural systems are indispensable to get enough insight in their behaviour in order 
to do rational design of Nature-inspired robust artificial systems or of Nature-
inspired robust algorithms, in the spirit of NiSIS. An appropriate method of 
investigation seems to be comparative analytical modelling of tentative Kinetic 
schemes of a natural system known to be robust. Another Method might be 
extensive comparative Data Mining of Data Sets produced from measurement of 
robust systems under different conditions.  Most important are underpinning 
mathematical theories such as Constructive Systems, Theory of Chemical 
Organisations (Peter Dittrich, Jena), Linguistic Chemistry (Walter Fontana, Santa 
Fe), Process Algebra, Equifinality in non-linear open systems (Ludwig von 
Bertalanffy), Dynamic Simulation, Stability and bifurcation analyses,  Metabolic 
Control Analysis (MCA),  Metabolic Pathway Analysis of elementary modes (Stefan 
Schuster, Jena), Metabolic Flux Analysis, Optimization, Evolutionary Game Theory 
and others. 

Much more general is the definition of robustness given by Wikipedia [10]. 
Robustness is the quality of being able to withstand stresses, pressures, or 
changes in procedure or circumstance. A system, organism or design may be said 
to be 'robust' if it is capable of coping well with variations (sometimes unpredictable 
variations) in its operating environment with minimal damage, alteration or loss of 
functionality. 
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2.4 The Term Robustness in the NiSIS Roadmap 
Let us check the instances of the term Robustness in the NiSIS Roadmap. 

 
Data Technologies 

Nature-inspired algorithms (Genetic Algorithms, Particle Swarm Optimization, 
Foraging, Ant colony) are the state-of-the-art solution techniques for some 
problems in emerging computing environments such as autonomic computing, 
ubiquitous computing, P2P systems, the Grid and the Semantic Web, where the 
interaction of large numbers of decentralised, parallel, asynchronous, and 
distributed components (software or hardware) is demanded. 

Essential for tackling the scalability problem is the introduction of modularity 
into the system. This requires defining the global goal, designing the activity of the 
local small entities, defining the interactions among the entities, and achieving the 
emergence of robust global behaviour. The global goal is not the sum of the local 
goals, but beyond that. Inspiration from biology, such as the concept of stigmergy 
(i.e., indirect communication via modifications of the environment, message 
passing), is particularly useful in the design of information systems that can adapt 
to unexpected environmental changes without pre-programmed system behaviour. 

In Chapter 4 of NiSIS Roadmap: Grand Challenges, the term Robustness is 
mentioned in the context of Bio-mimetic Intelligence: 

The conceptual Grand Challenge for building smart information systems is the 
mimicking of many of the desirable qualities, features and capabilities of the 
natural systems showing intelligent behaviour, both in their distinct functionalities 
and in their aggregated actions. 

We can identify the collection of these characteristics under the common 
umbrella of Bio-mimetic Intell igence (BmI) or, in other words, the ability of an 
information system to mimic nature-inspired adaptive and intelligent behaviour to 
better pursue its goals, to improve the robustness, efficiency and usefulness of its 
functionalities and enhance its interfacing capabilities to the external world.  
  
Grand Challenge 1: Computational Nervous System 

The rationale behind the design of a Computational Nervous System (CNS) is 
the development of 'sensing' capabilities in information systems. These 
capabilities, when addressing an information system, are related both to the 
acquisition of information from the external world (e.g. artificial vision, speech 
understanding, etc.) and the understanding of its internal functioning and 
performance (e.g. autonomic computing).  

The ultimate goal is to provide an information system with a CNS able to 
acquire data and information in a robust way and, at the same time, able to 
manage uncertainty and as in biological systems, self-adapt and self-repair. 

The expected benefits can be: the increased ability to acquire information; the 
additional safety provided by self-assessing mechanisms and, therefore, the better 
quality of the acquired information; the robustness aspect to systems failure or 
performance degradation; a better, fitter and efficient representation of the external 
world and the system’s inner status.  

Technological and scientific improvements are required in the field of 
sensors, sensor networks, nonlinear control systems (e.g. robustness, stability, 
adaptivity, etc.), evolutionary computation, computational intelligence and machine 
learning, signal processing, etc. 
 
Grand Challenge 3: Distributed Cooperative Intelligence 
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The rationale behind the design of Distributed Cooperative Intelligence (DCI) 
is the necessity of dealing with the increasing complexity of information systems 
through non-centralized mechanisms, as in biological systems.  

The ultimate goal is to develop information systems able to survive and 
improve their fitness through time by the distributed optimization and adaptation of 
all its components.  

The expected benefits can be: improved robustness to failure, computation 
errors and run time, improved computational efficiency, improved robustness to 
network communication faults, improved control of distributed systems, plants or 
organizations. 

2.5 References Chapter 2 
[2] [web page] URL: http://wordnet.princeton.edu/perl/webwn?s=robustness 
[3] [web page] URL: http://en.wikipedia.org/wiki/Robustness 

[4]  [web page] URL: http://www.stsc.hill.af.mil/crosstalk/1994/07/xt94d07l.asp 

[5]  [web page] URL: http://msdn.microsoft.com/library/en-
us/vbcon/html/vbconIntroductionToMessagingInVisualStudio.asp 

[6]  [web page] URL: http://www.bcu.ubc.ca/~otto/EvolDisc/Glossary.html 

[7]  [web page] URL: http://www.grc.nasa.gov/WWW/wind/valid/tutorial/glossary.html 

[8]  [web page] URL: http://www.onesixsigma.com/tools_resources/glossary/glossary_r.php 

[9]  [web page] URL: http://schools.cbe.ab.ca/logistics/r.html 

[10] [web page] URL: http://en.wikipedia.org/wiki/Robust 
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3 Objects of Robustness 

3.1 Robust Systems 

3.1.1 Robust Systems Theory and Applications  

'Adaptive and Learning Systems for Signal Processing, Communications and 
Control Series' is a book that might be recommended to get started. The purpose 
of this book is to introduce the reader to the theory of control systems, with 
particular emphasis on the applicability of the results. 

This book is a complete, up-to-date textbook on an increasingly important 
subject.  

Robust Systems Theory and Applications covers both the techniques used in 
linear robust control analysis/synthesis and in robust (control-oriented) 
identification. The main analysis and design methods are complemented by 
elaborated examples and a group of worked-out applications that stress specific 
practical issues: nonlinearities, robustness against changes in operating 
conditions, uncertain infinite dimensional plants, and actuator and sensor 
limitations. Designed expressly as a textbook for master's and first-year PhD 
students, this volume:  

• Introduces basic robustness concepts in the context of SISO systems 
described by Laplace transforms, establishing connections with well-known 
classical control techniques  

• Presents the internal stabilization problem from two different points of view: 
algebraic and state-space  

• Introduces the four basic problems in robust control and the Loop shaping 
design method. Presents the optimal *2 control problem from a different 
viewpoint, including an analysis of the robustness properties of *2 controllers 
and a treatment of the generalized *2 problem  

• Presents the *2 control problem using both the state-space approach 
developed in the late 1980s and a Linear Matrix Inequality approach 
(developed in the mid 1990s) that encompasses more general problems  

• Discusses more general types of uncertainties (parametric and mixed type) 
and µµ-synthesis as a design tool  

• Presents an overview of optimal ,1 control theory and covers the fundamentals 
of its star-norm approximation  

• Presents the basic tools of model order reduction  
• Provides a tutorial on robust identification  
• Offers numerous end-of-chapter problems and worked-out examples of robust 

control 
 

3.1.2 Building Robust Systems, an essay 

Another source of instruction is the essay 'Building Robust Systems' [12]. It 
concentrates on how to make robust and evolvable systems.  

Abstract: It is hard to build robust systems: systems that have acceptable 
behaviour over a larger class of situations that was anticipated by their designers. 
The most robust systems are evolvable: they can be easily adapted to new 
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situations with only minor modification. How can we design systems that are 
flexible in this way? 

Observations of biological systems tell us a great deal about how to make 
robust and evolvable systems. Techniques originally developed in support of 
symbolic Artificial Intelligence can be viewed as ways of enhancing robustness and 
evolvability in programs and other engineered systems. By contrast, common 
practice of computer science actively discourages the construction of robust 
systems. 

This essay is very well written, comprehensive and instructive. It is of high 
interest, particularly to bio-informaticians. It is a good supplement to the Roadmap 
of NiSIS. Reading is warmly recommended. 

Several aspects of robustness of natural living systems are discussed one 
after another, as described by paragraph headlines such as: 
 

• Redundancy and degeneracy (several copies of the same functionality, 
several equivalent functionalities) 

• Exploratory Behaviour (the desired outcome is produced by a generate-and-
test mechanism, just like in evolution in general) 

Compartments and localization (cell differentiation depends on cell 
environment, selection of particular behaviours from cellular genome, modularity) 

• Self-reconfiguring and self-repairing, self-monitoring 
• Defense, repair, and regeneration  (restriction enzymes in bacteria, immune 

system in mammals, liver tissue, diversity reduces vulnerability) 
• Composition to build compound functions (self-configuring in the genome, in 

the brain) 
 

All of these features seem costly, consuming vast resources, and to be simply 
non-economic at first glance, when considering implementation in artificial 
systems. Yet these are ingredients in evolvable systems. To make truly robust 
systems we must be willing to pay for what appears to be a rather elaborate 
infrastructure. The value, in enhanced adaptability, may be even more extreme. 
Indeed, the cost of our brittle infrastructure probably greatly exceeds the cost of a 
robust design, both in the cost of disasters and in the lost opportunity costs due to 
the time of redesign and rebuilding. 

Further topics considered in this essay are 
 

• The problem with correctness of functions in unforeseen situations 
• Infrastructure to Support Generalizability 
• Extensible generic operations (adaptation in meaning of operators to data 

types of operands, as in some advanced programming languages) 
• Generate and test (dependency-directed backtracking) 
• Constraints generalize procedures 
• Degeneracy in engineering (mechanism from the AI problem-solving world for 

degenerate designs: goal-directed invocation) 
 

Infrastructure to Support Robustness and Evolvability 
 

• Combinators 
• Continuations 
• Backtracking and concurrency 
• Arbitrary association 
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• Dynamically configured interfaces 
 

Conclusion: Our increasing dependence on computational and 
communications infrastructure, and the development of ever more sophisticated 
attacks on that infrastructure, make it imperative that we turn our attention to 
robustness. 

As part of the continuing work to build artificially intelligent symbolic systems 
we have, incidentally, developed technological tools that can be used to support 
principles of robust design. For example, rather than thinking of backtracking as a 
method of organizing search we can employ it to increase the general applicability 
of components in a complex system that builds itself to meet certain constraints. 

3.1.3 Robust Systems Laboratory  

The self-representation of the Robust Systems Laboratory reads like this [13]: 
 
A UNIFYING THEME, ROBUSTNESS AND UNCERTAINTY MANAGEMENT: 
 

ROBUSTNESS against disturbances and model uncertainty is at the heart of 
control practice. Indeed, in the (completely unrealistic) case where both all external 
disturbances and a model of the system to be controlled are exactly known, there 
is no need for feedback: optimal performance can be achieved with an open loop 
controller. Interest in robust control arose in the late 70's where it was shown that 
many popular control methods led to fragile closed loop systems, and the field has 
been very active since. Indeed, very recent research has shown that the concept of 
robustness through feedback is not limited just to control, appearing in fields as 
dissimilar as physics, network management and biology. At the Robust Systems 
Lab we are developing both theory and tractable algorithms to address various 
aspects of the problem ranging from the transformation of experimental signals 
from the physical plant to a set of models (robust identification), to the synthesis of 
a controller for that set of models (robust control). 

COMPUTER VISION SYSTEMS bring together imaging devices, computers, 
and sophisticated algorithms to solve problems in areas such as industrial 
inspection, autonomous navigation, human-computer interfaces, medicine, image 
retrieval from databases, realistic computer graphics rendering, document 
analysis, and remote sensing.  

The goal of computer vision is to make useful decisions about real physical 
objects and scenes based on sensed images. Achieving this goal requires 
obtaining and using descriptions (models) of the sensors and the world. At the 
Robust Systems Laboratory we study how to build these models and how to use 
them while being robust against disturbances such as noise, clutter, and model 
uncertainty. 

Computer vision is an exciting but disorganized field that builds on very 
diverse disciplines such as image processing, statistics, pattern recognition, 
control theory and system identification, physics, geometry, computer graphics, 
and learning theory. 

The goal of the ROBUST SYSTEMS LABORATORY is to develop both 
theoretical tools and specific algorithms leading to robust systems, capable of 
achieving near optimal performance under a wide range of conditions. 
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3.1.4 Robust System Design with Uncertain Information 

A short Article on 'Robust System Design with Uncertain Information' written 
from an experimental and technological perspective can be found at [14]. 

3.2 Robust Processes 
Web entries on Robust Processes in their majority concern business 

processes, administrative, educational, and learning processes, less frequently 
they concern technological processes e.g. in the technological domain of 
chemistry. 

3.2.1 Design of Simple and Robust Process Plants 

To the latter topic refers the book 'Design of Simple and Robust Process 
Plants' [15]. This book covers the design of simple and robust processing plants, 
and is intended to inform managers and engineers in the process industry, 
involved in process design, control design and operation, but is also interesting for 
students. 

The book is unique since it is the first comprehensive work addressing both 
the total process design and operational approach. 

Technological developments during the last decade made the design of really 
competitive processes possible. Mechanical developments have resulted in 
reliable and robust equipment. Process developments have created opportunities 
to minimize the amount of equipment; furthermore, different logistic approaches, 
integration of process functionality and intensification of the unit operations are 
possible. Computer and control technology allows remote-control operation and 
first pass prime production. 

Readers familiar with the ideas of NiSIS might recognize in this robust 
process design some features of inspiration from Nature. 

3.2.2 Robustness of business processes 

To the former topic (of robust processes) refers the Web entry of the 
Enterprise Computing Institute that considers the robustness of business 
processes [16]. 

What exactly is meant by a process being truly robust and what 
characteristics are inherent in such a process? This article presents as many as 24 
of the most important traits, together with their definitions, that your process should 
have in order to attain this robustness. 

Although interesting, this article is only mentioned but not presented, not at 
last since it follows a non-evolutionary definition of robustness that considers 
robust to be a synonym of rigid. 

3.3 Robust Networks 
The question about networks that immediately comes to mind reads like this. 

What about the Web? The Web is a particular Network. Its services may be 
characterized to be both administrative and educational. 

Do the present efforts at a renewal of the Web aim at enhancing its 
robustness? Certainly they aim at enhancing security and protection, at early 
recognition of and defence against threat and danger, at avoiding crashes, and 
also at optimising Web services and administration, and at improvement of data 
stream control. Are these objectives elements of robustness enhancement or even 
Nature-inspired robustness enhancement? 
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3.3.1 Design Principles for a Robust Network Infrastructure  

The article 'Design Principles for a Robust Network Infrastructure' will help 
answer these questions [17]. 

In this article of three pages the present and the future situation of the 
Internet are compared. At present, seemingly trivial failures are able to disrupt the 
Internet largely without bound. This is because a fundamental assumption 
underlying the design of many Internet protocols is that systems are fail-stop – 
they completely and detectably stop working when they fail. Over the past few 
years, operator errors in the form of router configuration mistakes have led to 
several spectacular disruptions to Internet connectivity. 

For the future; the authors argue that a key research challenge is to design 
network protocols and distributed systems that are as robust against arbitrary 
failures as today’s Internet is against fail-stop failures. Only by meeting this 
challenge can we make the Internet significantly more reliable. 

Yet unlike the case for simple failures, there is an almost complete lack of 
principles and techniques to help design protocols that can withstand arbitrary 
failures. 

Providing robustness against arbitrary failures will require new research. 
Established bodies of work such as cryptographic security and fault tolerance via 
consensus are certainly useful tools to help achieve robustness. But they are not a 
solution in their own right for the arbitrary failures that remain in practice. 

Because of the success of Internet designers in addressing fail-stop errors 
and the widespread use of authentication for critical services, the remainder – 
authorized hosts making syntactically correct but factually wrong statements – are 
a major source of unreliability in the Internet today. 

A natural class of robust networks The Authors’ thesis is that it is possible to 
design protocols that are robust against these unforeseen, arbitrary failures, and 
that this will require design principles that differ from those in use today. Identifying 
these principles will require the synthesis of knowledge from across the domains of 
networking and systems, software engineering, formal methods, cryptography, 
algorithms, and human factors. The resulting principles must be easy to 
understand, efficient, and scalable, or they will never be used. Those principles are 
based on case studies of implementation bugs and Internet router configuration 
mistakes. Principles to provide robustness in the face of simple failures have been 
formed over the past three decades. The goal is to develop principles for 
robustness against arbitrary failures that are just as effective.  

3.3.2 A natural class of robust networks 

A theoretical investigation of network robustness, demonstrating that the 
dynamical robustness of  complex networks is a direct consequence of their scale-
free (i.e. scalable) topology, was done by Aldana and Cluzel [18]. Abstract: As 
biological studies shift from molecular description to system analysis we need to 
identify the design principles of large intracellular networks. In particular, without 
knowing the molecular details, we want to determine how cells reliably perform 
essential intracellular tasks. Recent analyses of signaling pathways and regulatory 
transcription networks have revealed a common network architecture, termed 
scale-free topology. Although the structural properties of such networks have been 

thoroughly studied, their dynamical properties remain largely unexplored. We 
present a prototype for the study of dynamical systems to predict the functional 
robustness of intracellular networks against variations of their internal parameters. 
We demonstrate that the dynamical robustness of these complex networks is a 
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direct consequence of their scale-free topology. By contrast, networks with 
homogeneous random topologies require fine-tuning of their internal parameters to 
sustain stable dynamical activity. Considering the ubiquity of scale-free networks in 
nature, we hypothesize that this topology is not only the result of aggregation 
processes such as preferential attachment; it may also be the result of evolutionary 
selective processes. 

3.3.3 A scalable, robust network for parallel computing 

The article 'A scalable, robust network for parallel computing' deals with 
robust design of networks but, more importantly, with robust design of 
computational algorithms in distributed systems and, therefore, is described in 
more detail under the headline 'Methods for Modelling Robustness' [19]. 

3.3.4 Robust Networks: From Graphs to Systems Biology 

The book Robust Networks is quoted since it concerns one of the hot topics of NiSIS 
although it is not conclusive from the short description of the book what is meant by 
robust networks, since robustness is not mentioned explicitly [20]. 

Robust Networks discusses general principles behind network models and 
the essential concepts in mathematical modeling of molecular regulatory networks 
in biology. This book integrates biological mechanisms using a bottom-up 
approach in which genes and molecules are organized in complex networks. It 
relates abstract concepts in combinatorics and graph theory to questions in biology 
and addresses computational methods for deriving network models from data. It 
also addresses the testing of inferred networks by perturbation analysis on real 
biological systems using genomic techniques. With examples from research, this 
book is ideal for graduate students and researchers in computational biology. 

3.4 Robust Control 

3.4.1 Nature-inspired robust control 

Rüdiger Brause identifies two mayor sources of system robustness: negative 
feedback and redundancy in system components (refer to the Article in the 
Appendix). As well known, negative feedback plays a role in many genetic, 
epigenetic, metabolic, biochemical reactions of living organism where an end 
product can regulate the rate of its own biosynthesis as a general control 
phenomenon. Implementation of negative feedback, therefore, is a kind of Nature-
inspired robust control.   

He considers a simple state space model consisting of a sensor as input x, an 
amplifier with amplification factor A, and an effector as output y.    

If the parameter A varies, also the output y = Ax varies. This system is not 
robust versus perturbation or noise on A. 

Negative feedback of the fraction k < 1 of the output y, however, coupled 
back and superimposed to the input x gets the system robust.  
 

y = A(x – ky) = Ax – kAy    or    y = A/(1+kA) x = A’x    with    A’ =  (1/A + k) -1 
 

It is shown that in the new system the new Amplification factor A’ is 
approximately equal to the constant value 1/k as long as the Amplification factor A 
remains much greater than 1/k (i.e. 1/A much less than k),  in spite of  perturbation 
or noise. The stronger the feedback k (1/1000, 1/100, 1/10, …) the more 
robustness. Negative feedback can render a system robust if perturbation is small 
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enough. Else, however, it is only redundancy that can help to keep the system 
robust, i.e. several robust systems (with feedback) in parallel with the same input 
and the same output, such that they can substitute each other if one of them is 
subject to perturbation. 

This comparative model calculation represents a particular case of Robust 
Control. A Google search yields a lot of hits for Robust Control as key word. 

3.4.2 Robust and Optimal Control 

The Web recommends fundamental books on Robust Control, e.g. Robust 
and Optimal Control is class-tested at major institutions around the world and 
regarded as an 'Instant Classic' by reviewers, this work offers the most complete 
coverage of robust and Hà control available [21]. The clarity of the overall 
methodology: how one sets a problem up, introduces uncertainty models, weights, 
performance norms, etc. set this book apart from others in the field. Offers detailed 
treatment of topics not found elsewhere including – Riccati equations, m theory, Hà 
loop shaping, controller reduction, how to formulate problems in a LFT form. Key 
results are given immediately for quick access in the beginning of the book. Overall 
the book serves as a tremendous self-contained reference by having collected and 
developed all the important proofs and key results available. Problems sets are 
available on the Internet. 
 
Features: 

• Offers comprehensive coverage of both robust and Hà control, allowing 
flexibility in both the selection and organization of topics.  

• Takes a self-contained approach, including detailed proof and development of 
each topic.  

• Serves as either textbook or reference manual, designing coverage in such a 
way that readers do not need to cover previous chapters to access key results.  

• Provides highlights of the key results at the beginning of the book.  
• Constructs a strong instructional framework composed of... 

 
Guidelines for selecting topics. 

• Chapter Highlights. 
• Numerous diagrams and figures. 
• Worked examples showing step-by-step development. 
• Lists of key terms and symbols. 
• Chapter summaries. 
• End-of-chapter notes.  
 

3.4.3 Essentials Of Robust Control 

Essentials Of Robust Control [22] is based upon the popular Robust and 
Optimal Control [21]. This book offers a streamlined approach to robust control that 
reflects the most recent topics and developments in the field. Features Cover State 
of the Art topics, including Gap Metric, V-gap metric, Model validation, Real mu.  
 

• Offers the essentials of both Robust and Hà control suitable for a graduate 
course or self study  

• Adopts a self-contained approach, including detailed proof and development 
of each topic.  
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• Incorporates MATLAB tools accompanied by step-by-step illustrations 
throughout the book to execute computations.  

• Supports discussions with numerous diagrams and figures.  
• Guides readers through a wealth of worked examples depicting step by step 

development.  
• Provides highlights of key results at the beginning of the book.  
• Constructs a strong pedagogical framework in each chapter, including...  
• Guidelines for selecting topics.  
• Chapter Highlights.  
• Lists of key terms and symbols.  
• End of Chapter notes.  
• Exercises.  

 

3.4.4 MATLAB Robust Control Toolbox 3.2 

MATLAB provides tools for Robust Control [23]. Design robust controllers for 
plants with uncertain parameters and unmodeled dynamics. 

The Robust Control Toolbox provides tools for systematically factoring model 
uncertainty into your design to ensure consistent controller performance on the real 
plant. These tools let you quickly identify worst-case scenarios and automatically 
generate controllers with reduced sensitivity to parameter variations and modeling 
errors. 

3.4.5 Model Uncertainty and Robust Control 

The article 'Model Uncertainty and Robust Control' is a fundamental 
representation of  theoretical control engineering [24]. 
 
Introduction 

A key reason for using feedback is to reduce the effects of uncertainty which 
may appear in different forms as disturbances or as other imperfections in the 
models used to design the feedback law. Model uncertainty and robustness have 
been a central theme in the development of the field of automatic control. This 
paper gives an elementary presentation of the key results. 

3.4.6 Robust Control Theory 

Robust Control Theory is another interesting and instructive article on Robust 
Control [25]. 
 
Abstract: 

Conventional control theory has allowed man to control and automate his 
environment for centuries. Modern control techniques have allowed engineers to 
optimize the control systems they build for cost and performance. However, 
optimal control algorithms are not always tolerant to changes in the control system 
or the environment. Robust control theory is a method to measure the performance 
changes of a control system with changing system parameters. Application of this 
technique is important to building dependable embedded systems. The goal is to 
allow exploration of the design space for alternatives that are insensitive to 
changes in the system and can maintain their stability and performance. One 
desirable outcome is for systems that exhibit graceful degradation in the presence 
of changes or partial system faults.  
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3.4.7 Automatic Control Laboratory  

The Automatic Control Laboratory of the École Polytechnique Fédérale de 
Lausanne offers a course on Robust Control. 

Objectives: Control of dynamic systems, so that certain properties remain 
unchanged under perturbations, is considered. In many cases, the controlled 
system can be presented as a family of dynamic models with parameters or 
frequency responses lying within admissible sets. Robust control deals with the 
problem of stability and performance validation for a family of models. The 
objective of this course is to give an insight into analysis and design of robust 
control systems. Although the content of course is focused on the H� framework, 
the other approaches to robust control will also be covered in a tutorial way. 

3.4.8 Foundations of Systems Biology  

Textbooks and Monographs are particularly helpful for understanding 
robustness and robust control in terms of systems biology. The book Foundations 
of Systems Biology discusses robustness in Article 11 of Chapter IV (Cellular 
Simulation Computer Simulation of the Cell: Human Erythrocyte Model and its 
Application) and in Article12 of Chapter V (System Level Analysis) [26]. 

Constructing Mathematical Models of Biological Signal Transduction 
Pathways: An Analysis of Robustness 

Article 11 describes the Simulation Tool  E-CELL and its application to 
simulation of entire cells of human erythrocytes for understanding metabolic 
pathways and metabolic osmosis. This article also discusses stability and 
robustness in the cellular simulation and the role of feed-back mechanism and 
redundancy. 

Article 12 explains for two instances of application, bacterial chemotaxis and 
visual phototransduction in the retina, the robustness of biological signal 
transduction versus variation of system components and the environments, by 
integral feed-back control. Referred to also is homeostasis. Known models are 
reinterpreted to check whether or not they contain integral feed-back control. Three 
controller types are compared.  

The Section on Robustness of biological systems shows that the mechanisms 
that render bio-systems insensitive to exogene and endogene perturbation are 
poorly understood yet. 

The following Section deals with the portability of engineering methods and 
knowledge to bio-systems. Both technical and biological systems arise from some 
stepwise evolutionary process and are suboptimal for the purpose given. Also the 
relation between complexity and stability is similar for both types of systems. 

Kitano dares the hypothesis that robustness and stability in both types of 
complex systems is achieved by 
 

• System control 
• Redundancy 
• Modular design 
• Structural Stability (of regulatory and metabolic paths) 

 
In  the introductory Article of his book, Kitano emphasizes the importance of 

parameter identification for model simulation. Parameter estimation from 
experimental data on biological systems is critical. Conventional  Regression 
Analysis needs a model prior to simulation. In addition, bio-systems , as products 
of evolution, may have for some or even many of their parameters more than one 
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single true value which all pertain to practically identical system behaviour, in order 
to survive under changing conditions. From this perspective, undetermined model 
parameters are yet another aspect of robustness. 

Data Mining is an alternative of regression analysis by not aiming at 
numerical parameter identification. Nevertheless, Data Mining leads to a semi-
quantitative system model in terms of rules describing essential relationships 
among system quantities. Although bio-systems are robust versus exogene  or 
endogene perturbation, measurements on them may suffer from considerable 
scattering due to their complexity and the complexity of measurement methods, 
due to hidden parameters, and due to the stochastic nature of molecular 
components. Data Mining, however, thanks to renunciation of  numerical detail by 
clustering and thanks to inquiry in rules of relationship, only among value regions 
instead of exact values, is best appropriate to recognize nevertheless regularities 
and tendencies that can be condensed to result in a rule-based expert system. 

3.4.9 A course on Robust Control  

The course 'MATH 430 Modern Control theory F 36-12-0 48' [27] covers core 
topics in discrete and continuous time modern control theory: nonlinear differential 
equations, linearization, the algebraic theory of linear control systems which 
includes controllability, observability and minimal realizations; stability including 
Lyapunov stability and the design of robust stabilizers using control-Lyapunov 
functions; optimal control; state estimation via Luenberger and Kalman-Bucy filters. 
Laboratory experiments illustrate the lecture material, students are required to 
identify a high order under-actuated linear system and perform model verification 
experiments, and design and implement robust feedback controllers for a flexible 
structure, study robustness issues in controller design, and design dynamic 
controllers which employ state reconstruction from partial observations of the state. 

3.5 Robustness versus Stability 
Stability is defined as long-term maintenance of stationary states in the space 

of substance concentrations, or species populations of a dynamical system with 
given model parameters. In contrast, robustness is maintenance of functionality or 
performance  of the dynamical system at particular positions in the parameter 
space of the dynamical system. An extended notion of robustness comprises not 
just parameter modification but also model modification to obtain long term 
maintenance of system behaviour in spite of parameter fluctuation due to noise or 
parameter shift due to perturbation. 

3.6 Robustness Mechanisms in Natural Systems 

3.6.1 Robustness Mechanisms in Biology.  

The contribution by Rüdiger Brause at the NiSIS 2006 – 2nd Annual 
Symposium adopts a slightly different relationship between robustness and stability 
and also between robustness and adaptability, and it assigns robustness to the 
phenotype as robustness of biological entities against changes in the underlying 
environmental and genetic mechanisms[28]. 

Abstract: Robustness is an important concept within the biological world. We 
might define it by the small variance of a state of the subject, e.g. health, fitness or 
phenotype, against changes in the underlying working conditions compared to the 
variance of other possible states against the same changes. 
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Robustness differs from other concepts like stability and adaptivity (returning 
to a desired state), persistence, recovery and flexibility by its intrinsic structural 
components. Robustness may include topics like stability (small state perturbations 
lead to only small state changes) or structural stability (small structural parameter 
changes lead to a new system with the same qualitative behaviour), but include 
more aspects like organisation and architecture of a system, the offset between 
function, possible functional changes and architecture, and topics like the 
controversy between adaptivity and identity, i.e. plasticity vs. stability. 

In our context we are mostly interested in mechanisms of robustness in the 
molecular biological world. We are interested in phenotypic robustness, i.e. the 
robustness of biological entities against changes in the underlying environmental 
and genetic mechanisms. There are two main robustness principles known in 
literature: canalization and neutrality. 

He describes in molecular detail the genetic reasons for these observations. 
To his mind, the mechanisms are based on Redundancy of genes, Deleterious 
variance suppression (anti-redundancy)of genes. 
 
Comment: 

A far as inspiration from nature is concerned it is a bit questionable whether 
these genetic mechanisms might be mimicked in a Robust Artificial Systems. One 
might suspect nano-technology to be a means to imitate genetic processes in the 
spirit of Bio-mimetic Intell igence (BmI) which, in other words, is the ability of an 
information system to mimic nature-inspired adaptive and intelligent behaviour to 
better pursue its goals, to improve the robustness, efficiency and usefulness of its 
functionalities and enhance its interfacing capabilities to the external world. 
Whether this would be possible, however, seems to be an open question. 

3.6.2 Nature Inspired Monitoring and Control – Survey on Information Flow in 
Biosystems 

Another source of knowledge on Robustness in Natural Systems in molecular 
terms is NiSIS Task Force 'Nature Inspired Monitoring and Control' discussing 
basis mechanisms that confer robustness to biological and engineered systems 
[29]. 

With respect to Nature-inspired Modelling, Simulation, Optimisation and 
Control (NiMOC), the idea to assign Robustness to the phenotype is fruitful.  

Inspiration from Nature means to understand the analogy or metaphor 
between evolutionary preparation and evolutionary design. The device for 
evolutionary preparation is replaced with the designer’s laboratory. The mutations 
are replaced with the model variants (genotype, structure), while selection of 
species function is replaced with selection of simulation behaviour (phenotype, 
function). (quoted from Roadmap NiSIS, Chapter NiMOC) 
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4 Methods for Modelling Robustness 

4.1 Network-based Parallel Computation 
The article 'A scalable, robust network for parallel computing' by Cappello and 

Mourloukos deals with robust design of computational algorithms [30]. 
Interestingly, again, just like with large intracellular networks, also with server 
networks, the dynamical robustness of complex self-organizing, scalable networks 
of n servers is a direct consequence of their scale-free topology. 

Abstract: CX, a network-based computational exchange, is presented. The 
system's design integrates variations of ideas from other researchers, such as 
work stealing, non-blocking tasks, eager scheduling, and space-based 
coordination. The object-oriented API is simple, compact, and cleanly separates 
application logic from the logic that supports interprocess communication and fault 
tolerance. Computations, of course, run to completion in the presence of 
computational hosts that join and leave the ongoing computation. Such hosts, or 
producers, use task caching and prefetching to overlap computation with 
interprocessor communication. To break a potential task server bottleneck, a 
network of task servers is presented. Even though task servers are envisioned as 
reliable, the self-organizing, scalable network of n servers, described as a sibling-
connected fat tree, tolerates a sequence of n - 1 server failures. Tasks are 
distributed throughout the server network via a simple 'diffusion' process. 

CX is intended as a test bed for research on automated silent auctions, 
reputation services, authentication services, and bonding services. CX also 
provides a test bed for algorithm research into network-based parallel computation. 

4.2 Underpinning Mathematical Theories: Process Algebra 
The book 'Design of Simple and Robust Process Plants'; mentioned under the 

Heading 'Robust Processes', suggests some relation between Robustness and 
Competitive Processes. Likewise, the above article, 'A scalable, robust network for 
parallel computing', mentions interprocess communication and interprocessor 
communication. Indeed, it is plausible that competitive and communicating 
processes are a means to achieve robustness since, if equivalent, they may 
substitute for each other in order to choose the one that copes best with changed 
situations or else may decide to do an appropriate shared action. 

Process Algebra is precisely the means to formalize competition, cooperation,  
and communication of processes. It is a means to describe redundancy not in 
system components but in system processes, not in static, configurative modules 
but in dynamic, functional modules. Therefore, Process Algebra is also a means to 
formalize robustness which is a dynamic rather than a static phenomenon. 

4.2.1 Handbook of Process Algebra [31] 

Synopsis: Process Algebra is a formal description technique for complex 
computer systems, especially those involving communicating, concurrently 
executing components. It is a subject that concurrently touches many topic areas 
of computer science and discrete math, including system design notations, logic, 
concurrency theory, specification and verification, operational semantics, 
algorithms, complexity theory, and, of course, algebra. This Handbook documents 
the fate of process algebra since its inception in the late 1970's to the present. It is 
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intended to serve as a reference source for researchers, students, and system 
designers and engineers interested in either the theory of process algebra or in 
learning what process algebra brings to the table as a formal system description 
and verification technique. The Handbook is divided into six parts spanning a total 
of 19 self-contained Chapters. The organization is as follows. Part 1, consisting of 
four chapters, covers a broad swath of the basic theory of process algebra. Part 2 
contains two chapters devoted to the sub-specialization of process algebra known 
as finite-state processes, while the three chapters of Part 3 look at infinite-state 
processes, value-passing processes and mobile processes in particular. Part 4, 
also three chapters in length, explores several extensions to process algebra 
including real-time, probability and priority. The four chapters of Part 5 examine 
non-interleaving process algebras, while Part 6's three chapters address process-
algebra tools and applications. 

4.2.2 Process Algebra with Timing [32] 

Synopsis: Timing issues are of growing importance for the conceptualization 
and design of computer-based systems. Timing may simply be essential for the 
correct behaviour of a system, e. g. of a controller. Even if timing is not essential 
for the correct behaviour of a system, there may be good reasons to introduce it in 
such a way that suitable timing becomes relevant for the correct behaviour of a 
complex system. This book is unique in presenting four algebraic theories about 
processes, each dealing with timing from a different point of view, in a coherent 
and systematic way. The timing of actions is either relative or absolute and the 
underlying time scale is either discrete or continuous. All presented theories are 
extensions of the algebra of communicating processes. The book is essential 
reading for researchers and advanced students interested in timing issues in the 
context of the design and analysis of concurrent and communicating processes. 

4.2.3 Process calculus [33] 

In computer science, the process calculi (or process algebras) are a diverse 
family of related approaches to formally modelling concurrent systems. Process 
calculi provide a tool for the high-level description of interactions, communications, 
and synchronizations between a collection of independent agents or processes. 
They also provide algebraic laws that allow process descriptions to be manipulated 
and analyzed, and permit formal reasoning about equivalences between processes 
(e.g., using bisimulation). Leading examples of process calculi include CSP, CCS, 
and ACP. More recent additions to the family include the �-calculus, the ambient 
calculus, PEPA and the fusion calculus. 

Process Algebra, although originally developed for formalizing computational 
processes in computer-based systems, begins to play a major role for biomolecular 
interactions, Self-organization, Systems Biology, inter-cellular and signal 
transduction communication systems, membrane transport, and conformational 
change. 

Some examples of application of Process Algebra to problems in this domain 
will be presented. 

4.2.4 Machine learning bio-molecular interactions  

Machine learning bio-molecular interactions from an original temporal logic 
based language uses the �-calculus process algebra for modeling biochemical 
interactions [34]. 
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4.2.5 Reversible process algebras and self-organisation 

The article 'Reversible process algebras and self-organisation' [35] focusses on 
 

• Using process algebra as a model to describe bio molecular. interactions  
• Modeling with �-calculus  
• Modular way of implementing distributed systems 

4.2.6 Process Algebras for Systems Biology 

Process algebras have several attractive features which could be useful for 
modelling and understanding biological systems [36]: 

 
• Process algebraic formulations make interactions/constraints explicit – not the 

case with classical ordinary differential equation models. 
• Structure can also be apparent. 
• Equivalence relations allow formal comparison of high-level descriptions. 
• There are well-established techniques for reasoning about the behaviours and 

properties of models, supported by software. These include qualitative and 
quantitative analysis, and model checking. 

 
These features are of particular importance for the approach adopted in NiSIS 

on Modelling, Simulation, Optimization, and Control [37]. 

4.2.7 Modeling Signal Transduction Using Process Algebra 

Recent years have shown a rapid accumulation of molecular information 
about inter-cellular and signal transduction communication systems, which play a 
pivotal role in evolution, development and disease. However, this information is 
diverse, disparate and fraught with detail, rendering analysis difficult. We propose 
a novel formal unifying view of signal transduction as a pure communication 
system. We establish this correspondence, and employ the pi-calculus, a process 
algebra originally designed for describing networks of inter-connected concurrent 
computational processes, to model signal transduction systems. The model is 
mathematically well defined and biologically visible. It represents both the dynamic 
behavior of the system over time, and the structural molecular implementation that 
underlies this behavior. We demonstrate the power of the pi-calculus to represent 
complex molecular networks by constructing a model for the receptor tyrosine 
kinase (RTK)-MAP kinase cascade pathway. The low level molecular details (e.g. 
residues, domains) fit clearly and visibly within the representation and serve as the 
basis for the entire scope of global network behavior (e.g. feedback, cross talk). 
This uniform, integrated, scalable theoretical framework based on the pi-calculus, 
can be employed to study signal transduction at molecular, evolutionary and 
cybernetic levels: 1. Simulation and formal mathematical verification allow to 
predict the effect if changes in low-level components (molecules and below) on 
global outcome. This can serve for functional as well as evolutionary studies. 2. 
Formal methods for the comparison of processes represented in process algebras 
(e.g. bisimulation) serve as a basis for a novel measure of homology of pathways, 
the dynamics of signaling pathways, we are able to define a distance measure that 
incorporates both differences in molecular components and in their interactions. 3. 
The final network representation can be reified to an object, in itself amenable to 
cybernetic studies on general properties of different communication systems, 
molecular and others. 
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4.2.8 A pi Calculus Model of the Na Pump 

In their article 'A pi Calculus Model of the Na Pump' the authors apply 
Process Algebra to membrane transport and conformational change [38]. 

Integration of biological data, modelling and simulation of the biological 
systems become important research topics. Biology should adopt theoretical 
frameworks of physics, mathematics and computer science to challenge the 
enormous number of interacting molecules. Cell behaviour and molecular 
processes are usually described in biology by partial differential equations. These 
equations often fail to express molecular interactions or to represent systems with 
a small number of molecules. We propose a discrete mathematical tool called the 
�-calculus to model interactions and subsequent state transitions. The model 
provides a computational framework that allows an automated verification of 
system properties. This paper presents a discrete mathematical description of the 
ion transport across cell membranes in terms of the �-calculus process algebra. 
We motivate the use of the �-calculus as an adequate formalism for molecular 
processes by describing the dynamics of the Na pump. The Albers-Post 
mechanism is translated into an elegant �-calculus model outlining molecular 
interactions, conformational transformations, and ion transportation of the pumping 
process. We use a sophisticated software tool to verify some properties of the 
described system. 

4.2.9 Automatically deriving ODEs from process algebra models 

The article 'Automatically deriving ODEs from process algebra models' shows how to 
transform these equivalent model representations into each other [39]. 

4.2.10 BioAmbients 

The article 'BioAmbients' introduces the BioAmbients calculus, which is 
suitable for representing various aspects of molecular localization and 
compartmentalization [40]. 

Abstract: Biomolecular systems, composed of networks of proteins, underlie 
the major functions of living cells. Compartments are key to the organization of 
such systems. We have previously developed an abstraction for biomolecular 
systems using the �-calculus process algebra, which successfully handled their 
molecular and biochemical aspects, but provided only a limited solution for 
representing compartments. In this work, we extend this abstraction to handle 
compartments. We are motivated by the ambient calculus, a process algebra for 
the specification of process location and movement through computational 
domains. We present the BioAmbients calculus, which is suitable for representing 
various aspects of molecular localization and compartmentalization, including the 
movement of molecules between compartments, the dynamic rearrangement of 
cellular compartments, and the interaction between molecules in a 
compartmentalized setting. Guided by the calculus, we adapt the BioSpi simulation 
system, to provide an extended modular framework for molecular and cellular 
compartmentalization, and we use it to model and study a complex multi-cellular 
system. 

4.2.11 Seminaire Algorithmique et Biologie 

The 'Seminaire Algorithmique et Biologie' is a Representation and simulation 
of molecular processes using stochastic process algebra [41].  

Biochemical processes, carried out by networks of proteins, mediate the 
interaction of cells with their environment and are responsible for most of the 
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information processing inside cells. Recently, much interest has been focused on 
system level studies of such networks, and several approaches have been 
proposed for their representation and analysis. However, none of the existing 
approaches fully integrates dynamics, molecular, and biochemical detail.  

We propose to model biochemical processes using the pi-calculus, a process 
algebra originally developed for describing distributed computer processes. In our 
model, biochemical processes are mathematically well defined, while remaining 
biologically faithful and transparent. To allow accurate quantitative modeling of 
biochemical networks, we employ a stochastic variant, the spi-calculus, where 
actions are assigned rates according to the rates of the corresponding biochemical 
reactions. Based on this model, we developed a new computer system, called 
BioPSI, for representation and simulation of biochemical networks.  

The modular nature of the calculus allows incremental modeling of complex 
networks and alternation between different levels of complexity. This is 
instrumental for studying the modular design of biological systems. We have used 
the BioPSI system to study a recently proposed model of the circadian clock. Using 
the ability of the calculus to capture modular structures, we investigated the 
circadian machinery at two levels of abstraction. First, we modeled the molecular 
interactions explicitly. Second, we identified a functional module in the system - a 
hysteresis module - and described the system using this functional module. By 
using two BioPSI programs, we show that both levels of description are equally 
good at capturing the behavior of the system, and establish the function of the 
hysteresis module within the clock and in a wider cellular context.  

We are currently extending our modular framework to represent various 
aspects of molecular localization and compartmentalization, including the 
movement of molecules between compartments and dynamic rearrangement of 
cellular compartments. We intend to incorporate the adapted calculus as part of 
the BioPSI system, to provide a fuller modular framework for molecular interaction, 
localization and compartmentalization.  

4.3 Underpinning Mathematical Theories: Chemical Organisations 
Robustness in Chemical Organizations [42] Abstract: Complex dynamical 

networks consisting of many components that interact and produce each other are 
difficult to understand, especially, when new components may appear. In this 
paper we outline a theory to deal with such systems. The theory consists of two 
parts. The first part introduces the concept of a chemical organization as a closed 
and mass-maintaining set of components. This concept allows to map a complex 
(reaction) network to the set of organizations, providing a new view on the 
system's structure. The second part connects dynamics with the set of 
organizations, which allows to map a movement of the system in state space to a 
movement in the set of organizations. 

 
Theses of Chemical Reactions Theory 

 
• Reaction network: set of species + reaction rules = directed graph = Petri net 
• Reaction system: reaction network + dynamics 
• Closed set: reaction inside the set produce exclusively species of the set 
• Self-containing set: all species that are consumed can also be produced inside 

the set without loosing any species of the set (regeneration) 
• Organization:= closed and self-containing set of molecular species 
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• Organization structure: Hasse diagram of the Organizations of a reaction 
system 

 
To be robust, a reaction system must be closed and self-containing, i.e. it 

must be an Organization, as a necessary condition. But not any Organization as a 
sufficient condition is robust. Regeneration is not a suffiicient condition for 
robustness. Robustness means in addition insensitivity versus exogene and 
endogene perturbation with network extension and contraction included. In terms 
of organization theory this must mean that a changing reaction system  to be 
robust must not only be but also remain an Organization under both groth and 
shrinkage. Chemical Evolution is movement in the space of Organizations since 
only Organizations can be robust and therefore keep alive long enough to  
replicate, propagate and survive. 

4.4 Underpinning Mathematical Theories: Limit Cycles and Point 
Attractors 
Bertalanffy’s principle of equifinality in open non-linear systems seems to be 

another facet of robustness. It states, that these systems converge into the same 
final state in phase space irrespective of their initial state. It was published in his 
General System Theory [43].  

Indeed, this property might be considered robustness versus different initial 
conditions. Moreover, this principle states that equifinality applies only to systems 
that are non-linear in their intrinsic dynamics and open to their environment. Both 
these properties are characteristics of living systems, and non-linearity is a kind of 
complexity. 

Bertalanffy’s principle of equifinality is to some extent an empirical finding, but 
it has its theoretical basis in Poincaré’s theory on limit cycles and attractors of 
trajectories in phase space. 

An application to life sciences can be found in 'Evolutionstheorie und 
dynamische Systeme. Mathematische Aspekte der Selektion' by Hofbauer and 
Sigmund who show that different variants of Eigen-Schuster’s (non-linear) 
hypercycles have just this type of robustness and, therefore, can have come to 
exist by evolution [44]. 

A very interesting article on Robustness and Adaptation is the reprint of the 
Thesis 'An Organization-centric Approach to Viewing Adaptation in Complex 
Adaptive Systems' [45]. The author discusses in great detail interrelations between 
equifinality, limit cycles, point attractors and organizations. 

4.5 Underpinning Mathematical Theories: Metabolic Pathway Analysis 
Yet another approach to robustness is Metabolic Pathway Analysis of 

elementary modes (Stefan Schuster, Jena). Subject to his research is analysing 
the robustness of metabolic networks. 

Metabolic Pathway Analysis (or Metabolic Network Analysis) has the following 
characteristics: 

 
• Decomposition of the network into the smallest functional entities (metabolic 

pathways,  elementary flux modes) 
• Does not require knowledge of kinetic parameters 
• Uses stoichiometric coefficients and reversibility/irreversibility of reactions 
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An elementary mode is a minimal set of enzymes that can operate at steady 
state with all irreversible reactions used in the appropriate direction. All flux 
distributions in the living cell are non-negative linear combinations of elementary 
modes. The structural robustness of metabolic networks can be defined in terms of 
elementary modes. 

 
• Elementary modes are a suitable tool for analysing robustness because each 

elementary mode is non-redundant 
• Number of elementary modes is a measure of redundancy 

 
However, the number of elementary modes is not the best measure of 

robustness. A better measure of robustness is the fraction of elementary modes 
remaining functional after knock-out of one enzyme, averaged over all reactions 
whose enzymes can get knocked-out, one at a time, or, alternatively, its extension 
to multiple knockouts��

An inverse measure of robustness is network fragility. It can be computed via 
minimal cut sets. Minimal cut sets are sets of enzymes that have to be knocked out 
at least, to impede synthesis of a specified product. In a partially branched reaction 
way towards the specified product, the number of enzymes required depends on 
the number of branches. At non-branched locations where a single enzyme is 
sufficient the corresponding reaction is called essential. 
 

• Minimal cut sets involving only one element correspond to essential reactions. 
• Minimal cut sets can be calculated from elementary modes. 

 
Clearly, if the cut sets of a particular product contain few elements the 

production of this product is fragile since its synthesis can be impeded by few 
enzymes knocked out. Therefore, the Fragility coefficient of an enzyme = 
reciprocal of average size of all minimal cut sets in which an enzyme is involved. 
Network fragility coefficient F = average fragility coefficient over all enzymes. 

The Authors of Max-Planck Institut für Dynamik komplexer technischer 
Systeme write: Applying the elementary-mode analysis in the central metabolism 
of E.coli we could show that an integrative analysis of elementary modes can be 
used to reconstruct key aspects of cellular behaviour from metabolic network 
topology, namely to reliably classify mutant phenotypes, to analyse network 
robustness and flexibility, and to quantitatively predict functional features of genetic 
regulation. More generally, we conclude that robustness of metabolic networks is 
linked to redundancy, and that hierarchical genetic control supports this robustness 
by finding a trade-off between network efficiency and flexibility. Thus, elementary-
mode analysis can provide a suitable method for the analysis of organization and 
functionality of metabolic networks requiring - in contrast to dynamic mathematical 
modeling - only network topology, which is well-known in many cases [46]. 
Conclusion: This concept allows to map a complex (reaction) network to the set of 
elementary modes as functional building stones, providing a new view on the 
system's structure. Redundancy in functional units alone favours robustness of a 
metabolic network, irrespective of the kinetic parameters of its dynamics. Any 
perturbation whatsoever that affects only the dynamics of a robust network but 
leaves the structure intact does not distroy the robustness of the network. 
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4.6 The Dialectic Mutual Relation between Robustness and Adaptability 
By now it should be clear already that robustness requires flexibility, 

adaptability. At first glance, robust seems to be the opposite of adaptive, since 
sometimes robust is considered to be a synonym of rigid. This paradox, however, 
is only apparent. By contrast, a rigid system would fail in unknown situations or 
even get destroyed rather than succeed in maintaining its function.  

Robust is by no means the same as rigid. Robustness, in a sense, is both 
prerequisite and consequence of Adaptability, and Adaptability is both prerequisite 
and consequence of Robustness.  

Conclusion: Changing systems must be robust to be able to adapt. Changing 
systems must be able to adapt to be robust. This can be exemplified for several 
instances. Table 1 shows the corresponding aspects of Robustness and 
Adaptability for the example of Smart Adaptive Systems (SAS). Table 2 shows the 
corresponding aspects of Robustness and Adaptability for the example of Software 
Tools 

 

Table 1 – Adaptability vs. Robustness of SAS as Simultaneous Aspects 
SAS Adaptability Robustness 

Type I of response behaviour to 
environment changes 

in functioning despite of 
environment changes 

Type II of problem-solving ability to 
a different problem 

in finding a solution despite 
of problem changes 

Type III of response behaviour to 
environment changes, 
even without user 
interaction 

in functioning despite of 
environment changes, 
even without user 
interaction 

Type III of problem-solving ability to 
a different problem, 
even without user 
interaction 

in finding a solution despite 
of problem changes, 
even without user 
interaction 
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Table 2 – Adaptability vs. Robustness in Software Tools as Simultaneous Aspects 
Software Tool Adaptability Robustness 

Editor to process different  
texts/codes 

in functioning for any 
text/code 

Compiler to compile different  
source programs 

in syntax error check ability  
for any code 

Debugger to run different  
programs in extended 
mode 

in detecting and indicating  
execution errors 

Development Studio to cope with different  
development strategies 

in enabling correct program 
development 

Neural Network to be trained with different 
signals/ 
to recognize different 
patterns 

in mapping input neurons 
to  
output neurons 

Fuzzy System to process any non-precise 
or non-complete data 

in providing rules and 
allowing inference 

Machine Learning to process populations 
of any rules 

in extraction of relevant 
rules by awarding right 
prediction 

Evolutionary Computing 
(GA) 

to optimise different 
object functions 

in finding the optimum for 
any object function 

Simulation Model of 
Evolution  
Artificial (Molecular) 
Evolution 
Evolutionary Design 

to design environmental 
conditions advantageous 
for species of predefined 
functionality so as to make 
them survive by mutation 
and selection as the fittest 
individuals in a propagating 
population  

in global establishment of 
the quasi-species carrying 
the desired functionality in 
the propagating population, 
although mapping of 
structure to function is 
unknown  

Computer-Assisted  
Technical Development 
Rational Design 

to develop some device or 
algorithm by tentative 
modification guided by 
intellectual intervention. 

in finally obtaining 
predefined functionality, 
based on knowledge or 
conjecture 

Process Control 
by PID Loop Controler 

to apply the proportional-
integral-derivative 
algorithm to several 
different univariable, linear, 
time-constant processes 

in maintaining desired 
process behaviour and 
output 

Process Control 
Model free Adaptive 
Controler 

to update controler’s tuning 
parameters and strategy 
during its operation, based 
on rules or lookup tables of 
relationships between 
controller input and 
process output or using 
dynamic neural networks, 
to accommodate process 
changes 

in regulating process 
behaviour and output, even 
for varying process 
behaviour in time and in 
absence of any quantitative 
process model 
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Process Control 
Model based Predictive 
Controler 

to configure and tune 
programmable controllers 
using GUI, involving 
internal model, reference 
trajectory, control 
calculation, and self-
compensator 

in intelligent supervision 
opening the way for 
preventive process 
maintenance 

Statistical Regression 
Analysis 
Data Evaluation, Curve 
Fitting 
Parameter Estimation, 
Sensitivity Analysis, 
Experiment Design 

to model any system 
providing the measured 
data, by problem-specific 
computation of calculated 
data for least square 
regression 

in determining model 
parameter values from 
appropriately designed 
experimental data 
allocation 

Database to store and query any 
reality sector in a database 
application 

in finding relevant relations 
among database variables 
by queries 

Data Mining to cluster any data and 
extract rules among 
clusters 

in providing cluster and 
rule results for reliable 
prediction, independent of 
data material 
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5 Case Studies - Examples of Applications 

5.1 Robust Artificial Systems 
The following books discuss robust performance of Artificial Systems even 

under perturbation and uncertainty. 

5.1.1 Control of Uncertain Sampled Data Systems [47] 

Dynamical systems evolve in continuous time. Contrasting this, in feedback 
control the vast majority of complex systems are controlled using sampled 
observations of system behavior taken at discrete time instants. 

Presumably, this book is important for reversed engineering of genetic 
Networks from Gene Expression Data of Microarrays, if control of genetic networks 
is intended. 

5.1.2 Control under Lack of Information [48] 

This book is devoted to problems of control in dynamical systems in situations 
of uncertain information about the disturbance or in conditions of conflict. The 
problem consists in the choice of control (input) that ensures the best possible 
result (output) even in conditions of the most unfavourable possible disturbance. 
The method is Differential Game theory. The application domain is: Control of 
genetic networks 

5.1.3 Nonlinear and Adaptive Control Design [49] 

This innovative book breaks new ground in nonlinear and adaptive control 
design for systems with uncertainties. Introducing the recursive backstepping 
methodology, it shows for the first time how uncertain systems with severe 
nonlinearities can be successfully controlled with this new powerful tool. 
W.Levine (Ed)  

5.1.4 The Control Handbook [50] 

 This book has textbook character and is highly worth recommending. 

5.2 Robust Immune System 
Virtual Immune Systems are computer-based simulations and visualizations 

of immune system functions. 
Artificial Immune Systems are imitations of immune system functions in 

algorithms such as those for defence from virus attacks against computers or 
computer networks, or else algorithms for data analysis and pattern recognition in 
data. In fact, two of the most important immune system properties are protection 
against destruction of functions and the ability of pattern recognition. 

Imitation of the Immune System is a further domain of Computational Biology 
using Nature-inspired algorithms, next to Genetic Algorithms as imitation of 
chromosomal heredity, Artificial Neural Networks as imitation of information 
processing in the Central Nerve  System, Fuzzy Logic and Bayesian Inference as 
imitation of human reasoning.  (Missing is still the imitation of heartbeat to enable 
rhythmic information flux processing through algorithmic networks, and the 



 32

imitation  of kidney function for elimination of undesired, senseless, or sub-optimal 
solutions during information processing) 

Obviously, there is a relation between virtual and artificial immune systems. 
Algorithms that stand the test  in computer simulations of the virtual immune 
system by correct reflection of its functions in the simulation model, are candidates 
for the imitation of immune system functions by artificial immune systems in 
Computational Biology. In particular, the robustness of the virtual immune system 
can be tested during simulation and then be transferred to the algorithms of the 
artificial immune system. 

5.2.1 Cellular Automata Immune Model 

The 'Cellular Automata Immune Model' is a nice example of computer-
assisted model simulation and visualization of immune system functions based on 
Cellular Automata [51]. The model is a generalization of the well known Game of 
Life by Conway. In contrast to Game of Life, in the simulation model IMMSIM 
several types of particles are considered in many different kinds of interaction, 
where different particles play the roles of different immune system components 
and their known interactions are imitated algorithmically. 
 

The advantages of this approach are three-fold 
 

• Imitation of the complex immune interactions is much easier than by 
mathematical models 

• Visualization provides high evidence 
• The simulation model can be operated interactively such that the influence of 

both model assumptions and control measures can be studied.  
 

At the present state of development, IMMSIM takes into account B cells, T 
cells, Macrophages, Antigenes, Antibodies, Lymphokines. Different components 
can be added if desired. IMMSIM performs a realistic description and illustration of 
humoral aspects of the immune system and enables the study of clonal selection. 
 

A typical computer experiment proceeds in the following three steps 
 

• Choice of initial population of antigene-presenting cells (APC), B cells, and T 
cells 

• Design of the infection schedule 
• Start of simulation run 
 

5.2.2 Computer Immune System 

The following description of an Artificial Immune System is given at [52]: 
Natural immune systems provide a rich source of inspiration for computer security 
in the age of the Internet. Immune systems have many features that are desirable 
for the imperfect, uncontrolled, and open environments in which most computers 
currently exist. These include distributability, diversity, disposability, adaptability, 
autonomy, dynamic coverage, anomaly detection, multiple layers, identity via 
behaviour, no trusted components, and imperfect detection. These principles 
suggest a wide variety of architectures for a computer immune system.  
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5.2.3 A Vision of an Adaptive Artificial Immune System 

'A Vision of an Adaptive Artificial Immune System' is a talk by Stephanie 
Forrest that stresses diversity  and decentralization as  sources of robustness [53]. 

Natural immune systems are sophisticated information processors. They 
learn to recognize relevant patterns, they remember patterns that have been seen 
previously, they use combinatorics to construct pattern detectors efficiently, and 
they use diversity to promote robustness. Further, the individual cells and 
molecules that comprise the immune system are distributed throughout our bodies, 
encoding and controlling the system in parallel with no central control mechanism.  

The talk describes recent progress on several related projects which are 
incorporating principles and mechanisms from immunology into computer security. 
It will emphasize recent work on network-based intrusion detection in which normal 
behaviour (self) is characterized using TCP/IP packets. Several immune-inspired 
mechanisms are employed to create a distributed and robust approach to network 
security, and an outline of future extensions to make the system more 
immunological is given.  

Textbooks on Artificial Immune Systems are also available. 

5.2.4 Artificial immune systems [55] 

5.2.5 Artificial immune systems and their applications [56] 

5.3 Robust Immune Mechanisms in Health and Disease 

5.3.1 Autoimmune Disease 

A direct application of immune research in medicine is the paper by Hecker 
[57]. 

The aim of this investigation is to understand the reason why some patients 
of rheumatoid Arthritis (RA) respond to a particular autoimmune disease therapy 
(Biologicals that  counter the immune system inbalance through blocking immune 
cytokines that play an important role in the pathogenesis) but some others do not.  

The investigation is based on separate reverse engineering for reconstruction 
of the dynamic gene regulatory network out of  time-series gene expression data 
from responders or non-responders, respectively. 

Clearly, to ascertain discernibility a robust estimation of the gene regulatory 
network with limited connectivity and low model prediction error is absolutely 
required. To overcome the common parameter uncertainty problem in regression 
analysis for many parameters at limited sample size, the authors used LASSO 
regression. LASSO (Least Absolute Shrinkage and Selection Operator) regression 
is a modified Least Squares Parameter Estimation Technique for models linear in 
their parameters. In LASSO an additional penalty term in the least squares 
equation leads to parameter space shrinkage such that most entries in the Matrix 
W of mutual transcription strength control parameters of the genes become zero, 
rendering the connectivity limited and the Matrix W sparse. 

LASSO itself was further modified to integrate previous knowledge in 
molecular terms supplied by gene regulatory databases. Hence, the proposed 
approach is a robust data and knowledge based algorithm. The authors found that 
the distinct therapeutic outcome correlates with an early differential expression of 
many genes coding for cytokines and other immune.system-related proteins.  
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On the basis of this modelling the authors proposed that the biological 
ethanercept is not able to control the disease in non-responders because of a 
differential gene expression regulation of the therapeutic target TNF-alpha. Thus, 
the result of the investigation is not so much the elucidation of immune 
mechanisms but rather the identification of the therapeutic target. The reason for 
its different gene expression regulation is unfortunately still obscure. However, the 
authors promise efforts to render the therapy successful for each patient. 

5.3.2 Cognitive Immune System Model 

The paper 'Modelling the Cognitive Immune System Theory with a Learning 
Classifier System' by Voigt is a reinterpretation of John Holland’s Learning 
Classifier Algorithm in Machine Learning into terms of Cohen’s Cognitive Immune 
Systems Theory [58]. The authors describe how the characteristic features of the 
theory, namely degeneracy of recognition and context of immune reactions, can be 
realized in this modified Learning Classifier System. Furthermore, they introduce 
the representations of the immune agents, the phases of activity that take place in 
the applied evolutionary mechanism. The computational immune model has been 
implemented and the various parameters of its operational cycle are presented. 

The starting point for developing Artificial Immune System (AIS)  was when 
people began to formalize their descriptive approaches. AIS became a new field of 
research where principles and mechanisms of the immune system were applied as 
problem solving methods to different kinds of problems. 

The computational systems developed in AIS were based on the leading 
theories in the field of immune systems , namely Burnet’s Clonal Selection Theory 
and Jerne’s Network theory. In recent years I. Cohen has suggested a new 
approach which is based on the Network Theory but goes far beyond it. Cohen 
considers the immune system as a cognitive system that can learn, which can 
sense certain environmental aspects, build up an internal representation of them, 
and make decisions about actions that are required to keep the homeostasis of the 
individual. Special features of this theory are the degeneracy of recognition events, 
which is in sharp contrast to the assumption of monospecificity in clonal selection, 
and the embeddedness of immune activities in a context that is created by immune 
agents. Degeneracy of recognition means several equivalent functionalities rather 
than several copies of the same functionality: 

Autoimmune diseases are not mentioned in this paper. However, it might be 
investigated by  varying parametrization of the implemented computational immune 
system whether phases of activity can be generated that correspond to false 
recognition of self as non-self.   

5.4 Robustness in Systems Biology  
Systems Biology Projects at the MPI for Molecular Genetics in Berlin integrate 
experimental and modelling efforts. Two of them, that concern Model Discrimination 
in Cellular Biology, especially take into account the issue of robustness [59]. 
 
Biological problem Modelling techniques 
Discrimination of internal regulatory circuits 
from response to external signals 
(robustness vs. sensitivity of metabolism).  

- Simulation of ODE systems  
- Analysis of perturbation experiments 

Analysis and quantification of redundancy 
and robustness in the cellular network (in 
particular in signalling pathways).  

- Boolean and discrete-valued networks  
- Simulation of ODE systems  
- Analysis of perturbation experiments 
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5.5 Evolution, Robustness, Regeneration 

5.5.1 Computing robustness in biology 

An extremely interesting article on computing robustness in biology can be 
found at [60]. Robustness and fragility may hold the key to advances in biology and 
medicine, says Brian Cogan. One of  the key sentences in this article reads like 
this: 
One could say that robustness allows evolution to happen and that evolution favours 
robustness. It refers both to recent research of the Santa Fe Institute [61] and to an 
article by Nyquist [62]. 

5.5.2 Robust Design – a repertoire of biological, ecological, and engineering 
case studies 

The contributors to this study of robustness as a complex systems design 
principle explore the features of phenomena that are responsible for robustness or 
fragility [61]. The papers address the tension between stasis and response to 
change; opportunities for innovation; vulnerabilities to collapse; effects of 
interactions among different subsystems; and the role of adaptation and learning. 
The authors assess the extent to which knowledge about robustness can be used 
to gain a better understanding of biological, ecological and computational systems. 

5.6 Robust Tissue Engineering 
How might regeneration have come into existence? One possible answer is: 

by evolution. Prior to this question, however, is the question on how might tissues 
have come into existence? 

Have tissues evolved out of biotope populations of unicellular protozoa due to 
selection pressure that favoured survival of heterogeneous assemblies of cells 
interacting and communicating in division of labour, rather than survival of 
unicellular species? This question seems to be open. If so, however, then 
regeneration of tissue instead of propagation of cells might contribute to the 
robustness of tissues. 

A definite answer to this question is an essential prerequisite to Nature-
inspired robust tissue engineering. 

To realize the full benefits of tissue engineering, novel bioreactors are 
essential for the controlled fabrication of reproducible and robust tissue. 

5.6.1 Enabling Technologies for Tissue Engineering and Regenerative 
Medicine 

The Department of Health and Human Services consisting of the participating 
organizations: National Institutes of Health (NIH), National Institute of Standards 
and Technology (NIST), National Science Foundation (NSF) calls for contributions 
on 'Enabling Technologies for Tissue Engineering and Regenerative Medicine' and 
considers the following research areas important to achieve at robust tissue 
engineering: 
 

• Predictive computational models for engineering functional 3-dimensional 
(3D) tissues  

• 3D fabrication technologies for tissue engineering  
• Novel bioreactors to precisely control the chemical and mechanical 

environment for functional 3D tissue growth or to rapidly expand functional 
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stem cells and robust evaluation methods to determine environmental 
requirements  

• Quantitative, non-invasive tools to monitor structure, composition, and 
function of engineered tissues in real time  

• Technologies for manufacturing of tissue engineered products including 
preservation, sterilization, packaging, and transport, and methods for 
quantitatively evaluating cell and tissue health and phenotypic stability 
throughout the process.  

5.7 Self-repairing Systems 
Self-Repairing Computers. By embracing the inevitability of system failures, 

recovery-oriented computing returns service faster [63].  

5.7.1 Exploiting Architectural Design Knowledge to Support Self-repairing 
Systems 

'Exploiting Architectural Design Knowledge to Support Self-repairing Systems' 
is an article on self-repairing computational systems [64]. Abstract: In an 
increasing number of domains software is now required to be self-adapting and 
self-healing. While in the past such abilities were incorporated into software on a 
per system basis, proliferation of such systems calls for more generalized 
mechanisms to manage dynamic adaptation. General mechanisms have the 
advantage that they can be reused in numerous systems, analyzed separately 
from the system being adapted, and easily changed to incorporate new 
adaptations. Moreover, they provide a natural home for encoding the expertise of 
system designers and implementers about adaptation strategies and policies. In 
this paper, we show how architecture description languages and tools can be 
extended to provide such generalized dynamic adaptation mechanisms. 

5.7.2 Robust, self-repairing systems 

'Pattern formation for multi-robot applications: Robust, self-repairing systems 
inspired by genetic regulatory networks and cellular self-organisation' is an article 
on Nature-inspired self-repair, self-assembly, and pattern formation in multi-robot 
systems. Abstract: This work concerns a biologically-inspired approach to self-
assembly and pattern formation in multi-robot systems. In previous work the 
authors have recently studied   two different approaches to multi-robot control, one 
based  upon the evolution of controllers modelled as genetic regulatory networks 
(GRNs), and the other based upon a model of self-organisation in aggregates of 
biological cells mediated by cellular adhesion molecules (CAMs). In the current 
work, a hybrid GRN-CAM controller is introduced, which captures the advantages, 
and overcomes the disadvantages, or both of the original controllers; it combines 
the adaptability of the evolutionary process with the robustness of an underlying 
self-organising dynamics. The performance of the new controller is investigated 
and compared with the previous ones. 

For example, one experiment involves the evolution of a robot cluster that can 
stably maintain two different spatial patterns, switching between the two upon 
sensing an external signal. Another experiment involves the evolution of a cluster 
in which individual robots develop differentiated states despite having identical 
controllers (which could be used as a starting point for functional specialisation of 
robots within the cluster).  

The results show that the combined GRN-CAM controller is more flexible and 
robust than either the GRN controller or the CAM controller by itself, and can 
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produce more complex spatiotemporal behaviours. The GRN-CAM controllers are 
also potentially portable to robotic systems other than those for which they were 
evolved, as long as the new system implements the underlying CAM model of self-
organisation. Some technical issues regarding the implementation of the GRN and 
joint GRN-CAM systems are also discussed, including the use of 'smart mutation' 
operators to improve the speed of evolution of GRNs, and evolving the rate of 
dynamics of the GRN controller to suit the particular task in hand. 

5.8 Sustainability in Models of Society and Environmental Protection 
In the context of sociological models of direct or cooperative democracy in the 

society and in ecological models of environmental protection there appears the 
notion of sustainability. There is much temptation to consider the relation between 
sustainability and robustness. Indeed the meaning of both these notions is very 
close. 

These models reflect  opinion and attitude of Alternative Nobel Price Winners  
of whom Hans Peter Dürr is a member. They prefer learning from Nature to 
'improving',  repressing and dominating her. They understand that Nature consists 
of systems that are self-maintaining since they do not consume more than they 
invest. To respect natural rules of limitation means in political practice a profound 
reconstruction of Society, rather than minor corrections, and careful treatment of 
Nature. To render man-made systems sustainable, Dürr writes, they have to be 
organized in cycles and networks and open to constant change. However, the 
robustness of complex systems, such as Nature and Society, is not without limits. 
Therefore, Nature and Society  may become dysfunctional or get collapsed if they 
are affected by stress that exceeds their adaptability.  The reason, however, is 
different for Nature and Society. Due to scientific and technological progress of 
mankind, Nature, although robust, is at present confronted to attacks she has 
never seen before and that obviously outperform her adaptability. In contrast, 
Society, as a man-made system, is not yet robust enough to stand the challenges 
of current economy and ecology. 

Dürr pleads for respecting the insights of modern science showing that the 
complex system  of the living world requires careful treatment. Economy and 
technology must be structured in a transparent modular and fault friendly fashion 
rather than being giant like, monolithical, global and, therefore, error-prone and 
scarcely accessible to control. According to the principle of subsidiarity, in modular 
systems the partial tasks of the system behaviour are partitioned such that in 
division of labour each task is performed by the module that is most competent for. 
Fault localization and repair is much easier in modular structures.  Robustness of 
the system must not be based on competition of isolated components but rather on 
their cooperation and mutual support. This kind of systems is capable of self-
organisation, self-maintenance, creativity to react to crises and of conflict 
resolution. 
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6 Robust Algorithms 
 
The web page 'Thesilog: Robust Algorithms' is an on-line discussion on 

Robustness of Algorithms in general [66]: Not very seriously, I have thought about 
robust algorithm, i.e. an algorithm that is insensitive to its changes. Is it possible?! 
To answer this question, I must know what is an algorithm and what can be 
considered as an algorithm...  

6.1 Robust Statistics, Robust Regression 
The most important problem with previous approaches is that they can not 

cope with outliers. A solution to this problem was proposed by Fischler and Bolles 
[67]. Their algorithm is called RANSAC (RANdom SAmpling Consensus) and it can 
be applied to all kinds of problems [68]. There exist Robust Algorithms in several 
distinct research domains. A general definition of algorithm robustness, 
presumably, can not be given. 

6.2 Robustness and Artificial Intelligence 

6.2.1 Application of Artificial Intelligence Techniques 

Application of Artificial Intelligence Techniques. to Obtain Robust Dynamic 
Equivalents [69]. Summary: This paper presents an application of artificial neural 
networks (ANN) to power systems. ANN are tested to construct dynamic 
equivalents, which is considered a hard task in the context of power systems. The 
main objective is to reproduce the complex voltage at frontier nodes. The 
simulation results prove the applicability and robustness of this innovative 
approach.  

6.2.2 Robust Back Propagation Learning [70] 

6.2.3 Robust wavelet neural networks  

Function approximation using robust wavelet neural networks [71]. Summary: 
Wavelet neural networks (WNN) have recently attracted great interest, because of 
their advantages over radial basis function networks (RBFN) as they are universal 
approximators but achieve faster convergence and are capable of dealing with the 
so-called 'curse of dimensionality'. In addition, WNN are generalized RBFN. 
However, the generalization performance of WNN trained by least-squares 
approach deteriorates when outliers are present. In this paper, we propose a 
robust wavelet neural network based on the theory of robust regression for dealing 
with outliers in the framework of function approximation. By adaptively adjusting 
the number of training data involved during training, the efficiency loss in the 
presence of Gaussian noise is accommodated. Simulation results are 
demonstrated to validate the generalization ability and efficiency of the proposed 
network. 

6.3 Robustness in Bayesian Inference 
The notion of robustness also applies to Bayesian Inference. 
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6.3.1 Robustness and Model Comparison [72] 

6.3.2 Analysis of prior distributions and prior robustness 

Chapter 3 of the book 'The Bayesian Choice: A decision theoretic Motivation' 
is called 'From Prior Information to Prior Distribution' and contains the Analysis of 
prior distributions and prior robustness [73]. 

6.3.3 Asymptotic global robustness in Bayesian decision theory 

Asymptotic global robustness in Bayesian decision theory [74]. Abstract: In 
Bayesian decision theory, it is known that robustness with respect to the loss and 
the prior can be improved by adding new observations. In this article we study the 
rate of robustness improvement with respect to the number of observations n. 
Three usual measures of posterior global robustness are considered: the (range of 
the) Bayes actions set derived from a class of loss functions, the maximum regret 
of using a particular loss when the subjective loss belongs to a given class and the 
range of the posterior expected loss when the loss function ranges over a class. 
We show that the rate of convergence of the first measure of robustness is n , 
while it is n  for the other measures under reasonable assumptions on the class of 
loss functions. We begin with the study of two particular cases to illustrate our 
results. 

6.3.4 Robustness in Multivariate Regression Models 

Classical and Bayesian Inference Robustness in Multivariate Regression 
Models [75]. We consider a one-to-one correspondence between points }0{ÂÎ −nz  
and pairs ),( ry , where 0>r  and y  lies in some space Y , through yz r= . As an 
immediate consequence, we can represent random variables Z  that take values in 

}0{Â −n  as YZ R= , where R  is a positive random variable and Y  takes values in 
Y . By fixing the distribution of either R  or Y  while imposing independence 
between them, we generate classes of distributions on nÂ . Many families of 
multivariate distributions (e.g., spherical, elliptical, lq spherical, v spherical, and 
anisotropic) can be interpreted in this unifying framework. Some classical inference 
procedures can be shown to be completely robust in these classes of multivariate 
distributions. We use these findings in the practically relevant context of regression 
models. Finally, we present a robust Bayesian analysis and indicate the links 
between classical and Bayesian results. In particular, for the regression model with 
iid errors up to a scale, we provide a formal characterization for both classical and 
Bayesian robustness results concerning inference on the regression parameters.  

6.4 Robust Learning 

6.4.1 Robust Learning with Missing Data 

The paper 'Robust Learning with Missing Data' introduces a new method, called the 
robust Bayesian estimator (RBE) [76]. Abstract: This paper introduces a new method, 
called the robust Bayesian estimator (RBE), to learn conditional probability 
distributions from incomplete data sets. The intuition behind the RBE is that, when no 
information about the pattern of missing data is available, an incomplete database 
constrains the set of all possible estimates and this paper provides a characterization 
of these constraints. An experimental comparison with two popular methods to 
estimate conditional probability distributions from incomplete data – Gibbs sampling 
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and the EM algorithm – shows a gain in robustness. An application of the RBE to 
quantify a naive Bayesian classifier from an incomplete data set illustrates its 
practical relevance. 

6.4.2 Coherent Concepts, Robust Learning 

The Authors of the paper 'Coherent Concepts, Robust Learning' establish the 
connection between coherency and robust learning [77]. Abstract: We study 
learning scenarios in which multiple learners are involved and 'nature' imposes 
some constraints that force the predictions of these learners to behave coherently. 
This is natural in cognitive learning situations, where multiple learning problems 
co-exist but their predictions are constrained to produce a valid sentence, image or 
any other domain representation. Our theory addresses two fundamental issues in 
computational learning: (1) The apparent ease at which cognitive systems seem to 
learn concepts, relative to what is predicted by the theoretical models, and (2) The 
robustness of learnable concepts to noise in their input. This type of robustness is 
very important in cognitive systems, where multiple concepts are learned and 
cascaded to produce more and more complex features. Existing models of concept 
learning are extended by requiring the target concept to cohere with other 
concepts from the concept class. The coherency is expressed via a (Boolean) 
constraint that the concepts have to satisfy. We show how coherency can lead to 
improvements in the complexity of learning and to increased robustness of the 
learned hypothesis. 

6.4.3 Robust Learning from Bites for Data Mining 

Robust Learning from Bites for Data Mining [78]. Summary: Some methods 
from statistical machine learning and from robust statistics have two drawbacks. 
Firstly, they are computer-intensive such that they can hardly be used for massive 
data sets, say with millions of data points. Secondly, robust and non-parametric 
confidence intervals for the predictions according to the fitted models are often 
unknown. Here, we propose a simple but general method to overcome these 
problems in the context of huge data sets. The method is scalable to the memory 
of the computer, can be distributed on several processors if available, and can help 
to reduce the computation time substantially. Our main focus is on robust general 
support vector machines (SVM) based on minimizing regularized risks. The 
method offers distribution-free confidence intervals for the median of the 
predictions. The approach can also be helpful to fit robust estimators in parametric 
models for huge data sets. 

6.4.4 Research on robust learning 

Pittsburgh Science of Learning Center (PSLC) supports research on robust 
learning and is creating a research facility, LearnLab [79]. PSLC's LearnLab is a 
national resource for learning research that includes: 
 

• Authoring tools for online courses, experiments, and integrated computational 
learner models  

• Support for running in vivo learning experiments  
• Longitudinal microgenetic data from entire courses  
• Data analysis tools, including software for learning curve analysis and semi-

automated coding of verbal data.  
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6.4.5 Robust Learning and Segmentation 

Robust Learning and Segmentation for Scene Understanding [80]. Abstract: 
This thesis demonstrates methods useful in learning to understand images from 
only a few examples, but they are by no means limited to this application. Boosting 
techniques are popular because they learn effective classification functions and 
identify the most relevant features at the same time. However, in general, they 
overfit and perform poorly on data sets that contain many features, but few 
examples. A novel stochastic regularization technique is presented, based on 
enhancing data sets with corrupted copies of the examples to produce a more 
robust classifier. This regularization technique enables the gentle boosting 
algorithm to work well with only a few examples. It is tested on a variety of data 
sets from various domains, including object recognition and bioinformatics, with 
convincing results. In the second part of this work, a novel technique for extracting 
texture edges is introduced, based on the combination of a patch-based approach, 
and non-parametric tests of distributions. This technique can reliably detect texture 
edges using only local information, making it a useful preprocessing step prior to 
segmentation. Combined with a parametric deformable model, this technique 
provides smooth boundaries and globally salient structures. 

6.5 Robustness – Fuzziness – Fault Tolerance 

6.5.1 Key challenges in the fault-tolerant control 

Key challenges in the fault-tolerant control problem are to design: (a) a 
sufficiently robust controller which is reconfigurable, (b) a robust fault diagnosis 
scheme and (c) a suitable reconfiguration mechanism [81]. This very interesting 
site describes the following Projects: 
 

• Fault-tolerant control  
• Non-linear Observers  
• Neural Network Observers  
• Identification, Modelling & Canonical Structures for Neuro-Fuzzy Networks  
• Comparison of Fuzzy Modelling Approaches  

 

6.5.2 Robustness of fuzzy control rules [82] 

6.5.3 Robustness of fuzzy decision trees 

An article on improved robustness of fuzzy decision trees can be found at [83]  

6.5.4 Improvement of robustness through incorporating fuzziness 

The article 'Improvement of robustness through incorporating fuzziness' deals 
with improvement of flexibility and robustness through incorporating fuzziness [84]. 

6.6 Robustness and Adaptation in Data Mining 

6.6.1 Robust Cluster and Rule Based Prediction out of Data 

Data Mining is a means of knowledge discovery by recognizing patterns, 
regularities or interdependences in data material, for the purpose of prediction. 
Data Mining is data-driven analysis in the absence of any model of the system 
producing the data. The results are in terms of cluster partitions of the objects 
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carrying the data (e.g. patients in health care applications) and in terms of 
prediction rules connecting clusters of objects with respect to different variables in 
a heterogeneous data material. 
 

Thus, this treatment of Data Mining consists of three steps: 
 

• Data-based clustering of training data 
• Cluster-based rule extraction and rating 
• Cluster and rule-based prediction for unseen test data 

 
For prediction to be reliable both cluster partition and rules have to be robust 

versus use of different methods of clustering and different methods of rule 
extraction and rating. In addition, they have to be robust versus different numbers 
of objects (e.g. patients) involved in Data Mining. In Quality Management this proof 
is called validation. 

In contrast, Data Mining itself has to be adaptive so as to allow use of 
different methods of clustering and rule extraction and rating as well as 
involvement of different data volumes. 

In the absence of any model, the only possibility to prove the correctness of 
Data Mining results is their coincidence or at least compatibility (of highest rated 
rules) when obtained using different Data Mining methods and different data 
volumes. In this sense, data and methods have to be adaptive, but results have to 
be robust. 

6.6.2 Adaptation in evolution and in development 

The notion of adaptation, central to Evolution Theory, deserves some 
attention when transferred to technical development, i.e. to design of devices or 
algorithms to obtain some predefined functionality, in particular reliable prediction 
in decision support systems. 

While adaptivity is desirable during evolution or development, at the end of 
the process, in contrast, it is desired that the obtained functionality be robust. For 
this reason, robustness of a device or an algorithm, although surprising at first 
glance, may be seen as an aspect simultaneous to adaptivity when viewed from 
the standpoint of the user instead of that of the developer. The developer has to 
provide the user with the opportunity to change methods and data volumes so that 
the user can trust in robust results. 

Tables 1 and 2 try to illustrate the simultaneity of both adaptivity and 
robustness and to show how they are mutually conditional. Adaptivity and 
robustness are not in contradiction to each other, rather they are in a 
complementary relation. Data analysis methods have to be adaptive for the results 
to prove robust. Results have to be robust for adaptive methods to meet the 
predefined functionality. 

Table 2, in addition, shows that the specific meaning of both adaptivity and 
robustness heavily depends on the context, i.e. on the particular type of software 
tool and its predefined functionality.  

The focus is database application, data mining, and decision support by 
prediction. In the particular case of a decision support system, developer’s and 
user’s points of view have to be separated to show how adaptivity of the software 
is needed to provide the user with robust results of prediction, as shown in Table 3. 
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Table 3 – The components of a decision support system 
 Adaptivity Robustness 
Data ⊗ ∅ 
Methods ⊗ ∅ 
Results ∅ ⊗ 
 

Two notions of robustness in data mining may be distinguished: Firstly, 
robustness of rule base as the model of the system and secondly, robustness of 
prediction for unseen data, i.e. test data  

6.7 Robustness of Reverse Engineering for Reconstruction of Gene 
Regulatory Networks  

 

6.7.1 Robustness Aspects in Context of Gene Regulatory Networks 

• Robustness in context of gene regulatory networks has two aspects 
• Robustness of the networks themselves 
• Robustness of the results of reconstruction from data 

 

6.7.2 Methods of Model Building for Data-based Reconstruction 

Methods of model building for data-based reconstruction of gene regulatory 
networks may be grouped as follows: 
 

• Directed Graphs 
• Bayesian Networks 
• Differential Equation Systems 
• Stochastic Models 
• Boolean Networks 
• Rule-based Models 
• Learning Algorithms 
• Artificial Neural Networks 
 

6.7.3 Network reconstruction in a theory of the cell 

MTC, Virtual Genetics Lab AB, Fogdevreten 2, Karolinska Institutet, 
Stockholm, Sweden writes: A theory of the cell has to include dynamics, regulation, 
homeostasis, feedback, cycles, clocks, scale free nets, robustness, signalling 
cascade. Mathematical models have  to explain this repertoire by Boolean nets, 
regulatory networks and their reconstruction as well as their robustness, differential 
equations. 

6.7.4 Robust and adaptable behaviour of cells 

Peter Hagedorn from Risø National Laboratory, Denmark writes: The robust 
and adaptable behaviour of cells and tissues depends on the operation of complex 
regulatory biochemical networks. Elucidation of the structure and functioning of 
such networks poses major experimental and theoretical challenges. 
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6.7.5 Generic and robust Network modeling 

The Neural Computing Research Group (NCRG) at Aston University 
describes the background of its project: The principal aim for data analysis and 
modelling is to develop methodologies and tools that are generic and robust, that 
is, the conclusions drawn from studying  particular systems should be applicable to 
a wide range of microarray studies. Following data capture, image analysis, 
normalisation, data correction and pre-processing, the starting point for data 
analysis and modelling is a gene expression matrix (GEM) corresponding to n 
genes in its rows and m samples (conditions or time points). The purpose of 
microarray data analysis is two-fold: to investigate the organisation 
(interrelationships) of genes and/or the dynamic behaviour (interactions) of genes. 
While the former employs pattern recognition techniques for gene classification, 
the latter requires parametric modelling to represent gene networks. 

6.7.6 Robustness and stability of gene expression patterns under noise 

Tianhai Tian and Kevin Burrage from the University of Queensland describe 
their Stochastic Neural Network Models for Gene Regulatory Networks. In 
particular, they study robustness and stability properties of gene expression 
patterns under the influence of noise: Recent advances in gene-expression 
profiling technologies provide large amounts of gene expression data. This data 
raise the possibility for a functional understanding of genome dynamics by means 
of mathematical modelling. As gene expression involves intrinsic noise, stochastic 
models are essential for better descriptions of gene regulatory networks. We will 
present stochastic models by introducing stochastic processes into neural network 
models that can describe intermediate regulation for large scale gene networks. 
Poisson random variables are used to represent chance events in the processes of 
synthesis and degradation. For expression data with normalized concentrations, 
exponential or normal random variables are used to realize fluctuations. Using a 
network with three genes, we show how to use stochastic simulations for studying 
robustness and stability properties of gene expression patterns under the influence 
of noise, and how to use stochastic models to predict statistical distributions of 
expression levels in a population of cells. 

6.7.7 Robust statistical methods for Gene expression in medicine 

The IMA Workshop 'Statistical Methods for Gene Expression:  Microarrays 
and Proteomics' concentrates on robust statistical methods [85]. Various 
microarray technologies for measuring RNA transcript abundance have created 
some challenging statistical problems. There are many sources of variation in a 
typical experiment and these can be accounted for using statistical design and 
analysis-of-variance methodology; but careful attention has to be given to the high-
dimensionality and complicated interactions. Statistical methods invoked early in 
the data analysis pipeline can remove systematic errors and improve subsequent 
inferences. Robust statistical methods are important to account for influential 
observations that may be hidden in massive data sets. A wide range of supervised 
and unsupervised learning methods have been considered to better organize data, 
be it to infer coordinated patterns of gene expression, to discover molecular 
signatures of disease subtypes, or to derive various predictions. Related efforts 
aim to reconstruct regulatory networks from large sets of expression data. 
Theoretical problems arise in statistical inference when attempting to address 
thousands of gene-specific hypotheses at once, such as the problem to bound the 
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rate of false detections of differential expression. Further, research in statistical 
computing concerns infrastructure to enable efficient and flexible calculations with 
large expression data sets. The workshop will consider these and other pressing 
problems generated in current research. 

Reconstruction of regulatory networks generally takes into account the 
investigation of robustness. As a standard approach, reconstruction of regulatory 
networks contains the following steps of analysis : draft construction of regulatory 
networks e.g. by Singular Vector Decomposition or Robust Regression,  
optimization of the network structure by pruning, growing and evaluation of 
alternative structures,  dynamic analysis of robustness and critical states of the 
network,  validation of the network by database search and further empirical data.  

The extent of coincident substructures among different hypothetical network 
structures in a comparative structural analysis is the measure of robustness of the 
reconstruction approach. 

Robust data analysis requires new methods for clustering, visualisation, 
reverse engineering, and time series analysis [86]. 

6.8 Robustness – Evolutionary Game Theory 

6.8.1 Robustness and Conceptual Analysis in Evolutionary Game Theory in 
Sociology 

A variety of robustness objections have been made against evolutionary 
game theory [87]. One of these objections alleges that the games used in the 
underlying model are too arbitrary and oversimplified to generate a robust model of 
interesting prosocial behaviors. In this paper, I argue that the robustness objection 
can be met. However, in order to do so, we must attend to important conceptual 
issues regarding the nature of fairness, justice, and other moral concepts. 
Specifically, we must better understand the relationship between moral concepts 
and formal characterizations of games. 

6.8.2 What have we learned from Evolutionary Game Theory so far? 

'What have we learned from Evolutionary Game Theory so far' is a paper by 
Weibull [88]. Abstract: Evolutionary theorizing has a long tradition in economics. 
Only recently has this approach been brought into the framework of non-
cooperative game theory. Evolutionary game theory studies the robustness of 
strategic behaviour with respect to evolutionary forces in the context of games 
played many times in large populations of boundedly rational agents. This new 
strand in economic theory has lead to new predictions and opened up doors to 
other social sciences. The discussion will be focused on the following questions: 
What distinguishes the evolutionary approach from the rationalistic? What are the 
most important findings in evolutionary game theory so far? What are the next 
challenges for evolutionary game theory in economics? An evolutionary strategy is 
an evolutionary stable strategy ESS if it is robust against evolutionary pressure 
from any foreign strategy of invaders into the population. 

6.8.3 Evolutionary game theory and multi-agent reinforcement learning 

Abstract: In this paper we survey the basics of reinforcement learning and 
evolutionary game theory applied to the field of multi-agent systems. This paper 
contains three parts. We start with an overview on the fundamentals of 
reinforcement learning. Next we summarize the most important aspects of 
evolutionary game theory. Finally we discuss the state-of-the-art of multi-agent 
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reinforcement learning and the mathematical connection with evolutionary game 
theory. This article has textbook character. 

6.8.4 Evolutionary Game Theory (EGT) developed by theoretical biologists 

Evolutionary Game Theory (EGT) was developed by theoretical biologists, 
especially John Maynard Smith (cf. Maynard Smith 1982) as a formalization of the 
neo-Darwinian concept of evolution via natural selection. It builds on the insight 
that many interactions between living beings can be considered to be games in the 
sense of Game Theory (GT) every participant has something to win or to lose in 
the interaction, and the payoff of each participant can depend on the actions of all 
other participants. In the context of evolutionary biology, the payoff  is an increase 
in fitness, where fitness is basically the expected number of offspring. According to 
the neo-Darwinian view on evolution, the units of natural selection are not primarily 
organisms but heritable traits of organisms. If the behavior of organisms, i.e., 
interactors, in a game-like situation is genetically determined, the strategies can be 
identified with gene configurations. 

Robustness against small amounts of mutation means that there is an 
environment of x such that all trajectories leading through this environment actually 
converge towards x. In the jargon of dynamic systems, x is then asymptotically 
stable or a point attractor. It can be shown that a (possibly mixed) strategy is an 
ESS if and only if it is asymptotically stable under the replicator dynamics. 

6.9 Self-configuration, Self-repair, Self-healing 

6.9.1 The relation between self-organisation and robustness 

The relation between self-organisation and robustness is described in a paper 
developed at a Workshop in Helsinki [90]. One of European industry’s biggest 
problem is low Overall Equipment Effectiveness (OEE). Increasing OEE would 
have tremendous economic impact. ICT systems and embedded systems 
technology is capable of producing large increases in productivity. 

The workshop will include presentations covering perspectives from different 
aspects. Users, researchers and developers, technology and systems providers 
and operators. The workshop will address issues related to how self-healing and 
self-diagnostic systems and supporting technologies can contribute to increased 
OEE values . 

To tackle the challenge of self-diagnosing and self-healing automation 
systems the ICT system must meet the requirements and provide the necessary 
support to implement for example model-based diagnostics, fault prediction tools 
and decision support tools. It is also envisioned that an ICT system must be self-
diagnosing and self-healing to provide the necessary robustness.  One important 
goal is the development of a Scalable Self-Organizing Sensor Network. 

6.9.2 Self-healing systems, Self-repairing systems 

Self-Healing Systems. Scientific American has a fascinating five page article 
on recovery-oriented computing; self-reparing Computers. This gives a nice review 
of the motivations behind self-healing systems, as well as the technology [91]. 

6.9.3 Research Perspectives in Self-Healing Systems 

In self-healing systems, where it is important to monitor and check system 
behavior at runtime, runtime verification can provide new and relevant solutions 
and mechanisms in order to generate test oracles in an automated manner and to 
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use these test oracles for monitoring the program during execution. The use of 
invariants in self-healing systems is a promising solution for the monitoring phase 
[92]. 

The term autonomic computing introduces a new interesting and promising 
research field. Self-adaptive software requires non-functional requirements such as 
high dependability, robustness, adaptability and availability. 
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7 Appendices: Comparison of Approaches to Robustness 

7.1 Books, Projects, Papers 

7.1.1 Approach via multivariable digital non-linear control [93] 

7.1.2 Robustness, Modularity and Evolutionary Design of Living Systems 

'Robustness, Modularity and Evolutionary Design of Living Systems' is the 
title of a DFG project started in 2003 [94]. The central goal of the collaborative 
research centre is the development of theoretical concepts, mathematical models, 
and methods for data analysis that can be used to elucidate the ‘design’ principles 
of living systems, and to analyse their functional relevance. In order to achieve this 
goal, theoreticians and experimentalists jointly conduct a number of coordinated 
projects in which they explore the structural properties of cellular signalling 
pathways, regulatory and neuronal networks, and organismic interactions. The 
long-term plan is to develop a comparative and integrated understanding of the 
ways in which living systems solve the problem of robustness and adaptability, the 
role modularity plays in this context, and what favours and constrains the evolution 
of these properties. The individual projects study various components of the 
nervous, immune, and reproductive systems, and the regulation of cell 
differentiation and gene expression. Some projects focus on the development of 
pathologies that illuminate the limits of robustness. 

7.1.3 Papers on Robustness in Systems Biology Issue 1 

Already the first Volume of a new Journal on a new research direction, 
Systems Biology Issue 1, contains several articles on Robustness, under the 
aspects of  both system robustness and algorithm robustness. 
 
Liu et al.: Copasetic Analysis: A Framework for the Blind Analysis of Microarray 
Imagery: 

This is intergrative software for microarray data analysis. It consists of  
several different interactive algorithms of artificial intelligence with expert 
knowledge included. Robustness of results is tested at different signal to noise 
ratios. 
 
Schuster et al.: Analysis of Structural Robustness of Metabolic Networks: 

The number of elementary flux nodes of cellular metabolism is not an 
appropriate measure of structural robustness versus environmental influence on 
cells. Rather, measures of robustness should be based on relative diminution of 
the number of modes at knock-out of a particular enzyme. Three of them are 
tested at both fictive and realistic examples of metabolic networks. It is shown 
quantitatively that E. coli which must adapt to different conditions is more robust 
than erythrocytes are, living under homeostatic conditions. 
  
Jacobsen et al.: Identifying Mechanisms Underlying Complex Behaviors in 
Biochemical Reaction Networks: 

The authors use a modularization approach. They decompose an extensive 
system of ordinary differential equations with known parameters as a model of a 
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network with sustained oscillations and multi-stability into several subsystems in 
order to identify the mechanisms that cause sensitivity, robustness, and specific 
functions. They analyse the interaction between the sub-systems  that produce an 
observed cellular behaviour. 

7.1.4 Experiment design, parameter estimation, robustness analysis 

The 'Expression of Interest' 'System-Theoretical Analysis of Genomic and 
Signalling Models' is an integrative discussion of experiment design, parameter 
estimation and robustness analysis [95].  

The goal of the Integrated Project is the development of design and analysis 
methods specially suited for mathematical models in systems biology. Some of 
them help modellers choosing a good type of model for their problem, other 
methods make it possible to understand complex dynamic phenomena like 
crosstalk, feedback regulation and robustness.  

7.2 Vision and Outlook 

7.2.1 Nature-inspired evolutionary algorithms 

In context of Nature-inspired evolutionary algorithms, of particular interest is 
the role of self-organizing principles for evolutionary computation. Self-organization 
is fundamental to the developmental process at all levels: molecular, genetic, and 
cellular. With new reports of the number of genes in the human genome being 
revised downwards, the role of self-organization in complex webs of gene 
regulation is all the more salient. Given these new findings, perhaps the self-
organization of genotypic instructions that transform genotype to phenotype is a 
key missing ingredient necessary for unleashing the evolution of complex and 
scalable solutions with emergent phenomena such as: scale-freeness, adaptability, 
innovation, evolvability, and robustness. 

7.2.2 Developmental Algorithms 

Natural evolution and developmental biology have produced adaptable and 
self-repairing systems of great complexity.  Therefore, it is anticipated that models 
of biological cells and multicellular development are another source of knowledge 
that will aid us in making evolutionary algorithms more scalable.  Regardless of the 
developmental model or generative representation chosen – cellular automata, 
genetic regulatory networks, L-systems, etc – we must understand exactly what 
gives such systems their computational power and exactly how they affect 
evolvability. 

7.2.3 Robotics and evolutionary computation 

Particular areas of current explosive growth in scientific understanding 
relevant to the success we see in biological systems include the study of 
interaction, development, symbiosis (and its evolutionary extreme, symbiogenesis), 
embodiment, epigenetics, and developmental robustness and plasticity, higher-
level units of individuality (with heritability of fitness), evolutionary developmental 
morphogenesis with genetic regulatory control, and massively parallel and 
distributed multicellular networks with special connectivity characteristics. Current 
practice in robotics and evolutionary computation is benefitting from ever deeper 
understanding of these principles and mechanisms underlying the success of life-
on-earth, as generalized to other domains by Artificial Life. 
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7.2.4 Robustness through collective intelligence 

Recently, ant algorithms and swarm intelligence systems have been offered 
as a novel computational approach that replaces the traditional emphasis on 
control, preprogramming, and centralization with designs featuring autonomy, 
emergence, and distributed functioning. These designs are proving flexible and 
robust, able to adapt quickly to changing environments and to continue functioning 
even when individual elements fail.  

7.3 Recent Research Contributions Relevant to Robustness 
The definition of the three Focus Groups in NiSIS is considered a clever 

approach to learning from Nature since it guides reasoning on Nature’s principles 
that render living systems flexible, robust, fault-tolerant, noise-resistent, adaptive, 
evolvable in propagating populations. 

7.3.1 Network Design and Robustness Issues 

The Systems Theory Group, Dept. Mathematics, Universiteit Maastricht, UM 
is competent in network design and robustness issues. It is known for                                                                                                                                                             
General simulation framework for network systems, Piecewise Linear Dynamic 
Modeling and Identification of Gene-Protein Interaction Networks, Identifiability and 
controllability of natural information processing networks under chaos and noise, 
Network Modelling and Simulation from sparse, incomplete and uncertain data, 
Qualitative Network Modeling, The Group studies the role of  chaos and stochastic 
fluctuations in robustness and self-organized control in networks, reverse 
engineering from microarray data, Robust network design. 

Piecewise linear state space models of gene protein networks are treated in 
the paper on Robust Identification of Piecewise Linear Gene-Protein Interaction 
Networks by Westra and Peeters [96]. The treatment follows the dynamic state 
space approach with special interest in state space partition for local linearization, 
punctuated equilibria and sparse hierarchical interaction. It focuses on exact 
computation of the interaction matrix in reverse engineering from microarray time 
series data and its robustness to intrinsic and extrinsic noise. The algorithm is 
explained in mathematical detail. Design principles of robustness and control are 
derived from Nature. 

7.3.2 The final aim of NiSIS 

The final aim of the NiSIS project is understanding the principles and 
properties of living systems, such as dynamics, networks, flexibility, resilience, 
recovery, robustness, self-organisation, multi-scaled interconnection and 
communication, simplicity of basic elements, emergence, modularity, 
decentralization, fault-tolerance, noise-resistance, adaptation, evolution in 
propagating populations, and their implementation into both computational 
algorithms and artificial Smart Information Systems/Smart Adaptive Systems via 
real world applications. 

7.3.3 Decentralized Modeling and Decentralized Thinking 

Robustness studies are part of Modelling decentralized structures. 
'Decentralized Modeling and Decentralized Thinking' is a verbal consideration on 
decentralization principles and decentralization modelling, with references to self-
organization as organization among individuals without any organizer, and to 
randomness and order [97]. 
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'Bird Flocks and Zebra Stripes' [98] is a rather nice introduction to populations 
as biological decentralized structures, including Self-Organization, Self-Organized 
Patterns, Evolution, Adaptation, Emergence, Robustness etc. 

7.3.4 Robustness through Sparseness in Network Models 

Data-based Extraction of Hypotheses about Gene Regulatory Networks in 
Liver Cells by Guthke et al. is a paper on data-based network reconstruction [99]. 
Hypotheses about the signalling pathways  after LiCl stimulation of liver cells were 
generated by clustering and network reconstruction from gene expression time 
series data. Due to the large number of potential interaction partners the selection 
of appropriate network nodes was the crucial step in the data analysis. This 
selection was performed by filtering differentially expressed genes at different 
sampling time points. The links between network nodes were revealed by the 
NetGenerator algorithm that minimizes both the model fit error and the number of 
non zero parameters in the linear kinetic equations of gene expressions under the 
restriction of available biological knowledge. Kinetic clustering of gene expression 
time series revealed 10 different kinetic types associated with individual subsets of 
differentially expressed genes and a representative gene. Model validation was 
performed by adding normally distributed noise to the measured data. This type of 
modelling control reveals at the same time controlled networks robust to noise. 

7.3.5 Robustness through Metabolic Control 

Analysis of Metabolic Control Strategies by Bayer is a verbal paper on 
principles of adaptability and robustness of biological systems [100]. Due to their 
complexity, cells have evolved multiple regulatory networks to control metabolism, 
growth and replication. Hierarchical organisation, modularisation, redundancy by 
development of alternative pathways and feedback control circuits are mentioned 
as key elements, mechanism and strategies to achieve both adaptability and 
robustness. Issues discussed in detail are key elements of (transcriptional) 
regulation, such as Sigma-factors, transcription factors; regulatory strategies, such 
as two- component regulatory systems (phaphorylation/dephosphorylation), 
regulatory motifs and models; definition of robustness, basis mechanism that 
confer robustness to biological and engineered systems. Analytical platforms 
providing insights on molecular level will improve the monitoring of individual 
components and thereby facilitate comprehension of their interplay.  

7.3.6 Robustness through collective intelligence 

Applied Nature Inspired System: A Survey by Lhotska et al. reviews examples of 
Nature-inspired software applications mostly drawing inspiration from collective 
behaviour of colonies with particular mechanisms of communication between 
individuals [101]. Nature-inspired modelling and simulation in general is aimed at 
understanding fundamental properties of natural systems such as dynamics, 
flexibility, robustness, self-organization, simplicity of (network) elements and 
decentralization without central control (in colonies and collectives). Search items 
chosen for Google are swarm intelligence, ant colony optimisation, particle swarm 
optimisation, artificial immune systems, swarm robotics. Both ant colony optimisation 
and  particle swarm optimisation are algorithms mainly suited for optimisation 
problems, but also for clustering, data mining, and dynamic task allocation. 
Differences between particle swarm optimisation and genetic algorithms are 
explained. Swarm robotics is an emerging field of collective robotics. Artificial 
immune systems are population algorithms that mimic foreigner recognition, memory 
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and protection. Also they are applied to anomaly and fault detection, clustering, 
learning, optimisation.  Many examples of application to problem solving are 
described, even prior to real world applications or technical implementations. Projects 
and  conferences, software systems and journals are discussed. These algorithms 
are important especially  for computation and telecommunication systems, also for 
social, ecological and economical systems, and of course for modelling optimisation 
and control of living systems.  

7.3.7 Robustness through Decentralized Modeling, Division of Labour, 
Multitasking 

Sebastian Zellmer’s Task Force on Multitasking of Liver Tissue: The liver is 
the main organ of intermediary metabolism. Different bio-molecules are 
synthesized, degraded and modified at the same time in different compartments of 
hepatocyte  tissue in the liver. Glutamine is synthesized  by the enzyme Glutamine 
synthetase und is degraded by the enzyme glutaminase in a different 
compartment. Therefore, the liver has multitasking capabilities.  

The enzyme glutamine synthetase, expressed in the compartment of a small 
subpopulation of hepatocytes, shows an expression pattern of static localization, 
and is, therefore, used as a model enzyme to investigate factors and signalling 
pathways of this expression pattern by data-based modelling from gene array data. 

The liver can consequently be interpreted as a massively parallel processing 
computer (MPP) where each cell can be seen to represent a single processor. As 
knowledge of regulatory mechanism of metabolic pathways in multi-cellular organs 
grows, it becomes possible to transfer this knowledge to computer science to 
create intelligent MPP schedulers. Vice versa, known regulatory mechanisms in 
computer science may help analyse whether similar regulatory processes are 
being used in Nature, too. 

The scope of the Task Force is to reverse engineer the signal transduction 
pathways of the heterogeneous expression of proteins within a liver lobulus from 
gene array data. Next, its response to hormone or cytokine stimulation will be 
monitored and evaluated by means of the NetGenerator Algorithm.  A two-
compartment model will be developed to simulate simultaneous synthesis and 
degradation processes  of glutamine synthesis and degradation. 

There are also similarities between the compartments of the lobulus and other 
compartemented structures. Larger warehouses receive goods in varying amounts 
and composition as the liver does. Supply, storage, modification, and delivery of 
goods take place simultaneously in warehouses as they do in the liver. Warehouse 
organisation requires complex regulatory schedules that may be similar to, and 
might help understand, those in liver tissue. 

7.4 Personal Views of NiMOC Focus Group Members on Robustness 
Among the members of the NiMOC Focus Group each one has his specific 

look at Robustness. Let them pass in review. 

7.4.1 Robust Network Reconstruction  

Robust network reconstruction by reverse engineering from time series 
microarray data (Reinhard Guthke). 
 

Systems Biology / Bioinformatics 
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• Systems Biology approach to understand both infectious processes and the 

physiology of secondary metabolites from microarray gene expression data. 
• Combination of in vivo, in vitro and in silico approaches  to discover the 

structure and dynamics of biological systems by process data analysis and 
modelling 

• Control and optimisation of experiments (model based experimental design), 
biotechnical product formation and medical processes in diagnostics and 
therapy. 

 
Methods, Algorithms, Software 

 
• New methods for pattern recognition, data mining, or statistical learning, found 

promising in other application areas. 
• Comparison and ranking of methods based on quantitative results obtained for 

simulated and real data sets 
• Development of improved methods that facilitate the practical analysis and 

enable the analyst to fully utilize the potential of the selected approaches; 
relieve the user of possibly critical heuristic decisions by automatic 
optimization of algorithmic settings 

• Interdisciplinary application of the best methods and demonstration of their 
advantages to medical doctors. 

• Primary focus on DNA microarrays and mass spectrometry data from 
inflammatory diseases and tumors 

 

7.4.2 Robustness in terms of Molecular Biology 

Karl Bayer understands robustness in terms of molecular biology. 
 
Analysis of Metabolic Control Strategies 

• Adaptability and robustness of biological systems 
• Complexity of cells. Definition of robustness   
• Multiple regulatory networks to control metabolism growth and replication 
• Hierarchical organisation, modularisation, redundancy by development of 

alternative pathways and feedback control circuits 
• Key elements, mechanism and strategies to achieve both adaptability and 

robustness 
• Key elements of (transcriptional) regulation, such as Sigma-factors, 

transcription factors 
• Regulatory strategies, such as two- component regulatory systems 

(phosphorylation/dephosphorylation), 
• Regulatory motifs and models 
• Basis mechanism that confer robustness to biological and engineered systems 
• Analytical platforms providing insights on molecular level will improve the 

monitoring of individual components and thereby facilitate comprehension of 
their interplay 

 

7.4.3 Robustness is self-organized control 

Robustness is resistance against chaos and stochastic fluctuation (Ronald 
Westra). 
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Modelling and Identification of Gene-Protein Interaction Networks 
 

• Piecewise Linear Dynamic Modeling and Identification of Gene-Protein 
Interaction NetworksIdentifiability and controllability of networks under chaos 
and noise 

• The role of chaos and stochastic fluctuations in arising macroscopic 
complexity from microscopic interactions 

• Dynamical systems approach on the role of  chaos and stochastic fluctuations 
in robustness and self-organized control of biological systems 

• The tendency of natural systems to punctuated equilibria in piecewise linear 
models with sparse and hierarchic interactions 

• Reverse engineering and reconstruction of dynamic genetic networks from 
microarray data 

 

7.4.4 Adaptation and Robustness are due to intelligent decision making  

Adaptation and Robustness are due to intelligent decision making and 
intrinsic fuzzy logic of living systems (Jon Garibaldi). 
 

• Modelling of human decision making, primarily in the context of medical 
applications. 

• Fuzzy logic to model the imprecision and uncertainty inherent in medical 
knowledge representation and decision making  

• Applied in areas such as the assessment of immediate neonatal outcome and 
more recently the detection of pre-cancerous changes in cells from FTIR 
analysis of cervical smears.  

 
• Transfer of medical intelligent systems into clinical use 
• Evaluating intelligent systems and mechanisms for their implementation, 

optimisation techniques such as simulated annealing and genetic algorithms, 
particularly when applied to the optimisation of decision making models, and in 
the  study of adaptive and time-varying behaviour.  

 

7.4.5 Robustness by simulation and modelling  

Kauko Leiviskä looks for principles of robustness by simulation and modelling 
of living and artificial systems and of industrial processes. 
 

Simulation and Modelling – Modelling tools 
 

• Numerical methods for simulation 
• Simulation tools and technology 
• Visualization of modelling and simulation results 
• AI in Simulation 
• Parallel simulation 
• Simulation of distributed parameter systems 
• Training simulators and real-time simulation 
• Simulation in control engineering 
• Process plant simulation 
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Simulation and Modelling – Simulation in industry 
 

• Simulation in pulp and paper industry 
• Simulation in metallurgical industry 
• Simulation in the energy sector 
• Power station design 
• Simulation in chemical engineering 
• Simulation in biological and environmental engineering 
• Simulation in electronic systems 
• Simulation in electronic manufacturing 
• Simulation in mechanical engineering 
• Simulation of marine systems 

 

7.4.6 Robustness and control of model building 

Teresa Mendonca: Multiple strategies for on-line parameter estimation via a 
hybrid method: designed to model parameter estimation 
 

• that combines the ability of neural networks to produce good initial parameter 
guesses for problems non-linear in their parameters with the fast convergence 
to the true values only when using good estimates. 

• 1th strategy: general applicability 
• 2nd strategy intended for models having a structure of several serial blocks.  
• Nature-inspired component of the combined algorithm: Artificial Neural 

Network that assures control of model building.  
 

7.4.7 Robustness of data-based modelling by means of intelligent 
technologies 

Michael Pfaff: Intelligent Technologies cover 
 

• Fuzzy Technology  
• Neural Networks  
• Machine Learning  
• Data Mining  
• Knowledge Based Systems  

 
in order to carry out  
 

• BioData Analysis  
• BioProcess Analysis  

 
and to provide  
 

• BioProcess Optimization Software  
• BioProcess Optimization Strategies  

 
Problems related to bioprocess optimization are usually approached in three 

major steps: 
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1. Identification of Optimization Objectives  
2. Bioprocess Analysis  
3. Bioprocess Optimization  

 

7.4.8 Robustness in terms of Systems Theory 

Mannes Poel sees robustness in terms of Systems Theory, Control 
Engineering, Mathematical and Computational Physics, Operations Research, 
Stochastics and Statistics 
 

• Telematics and Telecommunication Systems  
• Microsystems technology and Micro-electronics 
• Embedded Systems 
• Systems Theory, Control  Engineering and Mechatronics 
• Biomedical Signal Processing 
• Mathematical Physics and Computational Mechanics 
• Multi-Media, Virtual Reality and Human Computer Interaction 
• Systems, Information and Software Engineering 
• Operations Research, Stochastics and Statistics 
• Financial Engineering (FELab, CTIT) 

 

7.4.9 Robustness of Multi-Scale Aggregation Models 

Derek A. Linkens: 
 

• Modelling Aggregation and Robustness 
• Multiscale Modeling of Complex Systems 
• Modelling growing structures, incorporating effects of recovery, static and 

dynamic re-configuration 
• Composing aggregate models from theory-driven and data-driven components 
• Components have their own internal dynamics but couple/interact locally and 

lead to aggregated global properties 
• Aggregated behaviour provides robust properties and prediction. 
• Reliable and robust performance against variability of parameters of model 

modules 
• Self-organising adaptive behaviour based on steady state performance with 

extension to dynamic specification 

7.5 NiMOC Grand Challenges in Robustness Research 

7.5.1 Scalable Robust Self-organizing Sensor (SRSS) network project 

The Scalable Robust Self-organizing Sensor (SRSS) network project is an 
effort by the Protean group at NRL to conduct research of communication 
protocols applicable to creating networks of distributed and self-organizing sensor 
devices [102]. However, much of the software developed in this project is 
applicable to a broad set of dynamic networks, aside from sensor networks. 

7.5.2 Proofreading  

Nature-inspired Modelling, Optimization and Control might learn some 
lessons from mechanisms of molecular biology that ascertain robustness by 
control of  heredity genetics. 
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Fault detection, fault tolerance control, robustness control, e.g. in analogy to 
proofreading of replicated DNA and translated proteins, similar to self-healing; but 
proofreading in simple organisms like Escherichia coli is already a complex 
process with operation under constraints. 

7.5.3 Balancing Robustness and Evolvability  

A very intresting article on proofreading at several levels looking for a single 
unifying mathematical framework that can encompass such diverse examples of 
biological robustness is a paper by Lenski [103]. 

One of the most important features of biology is the ability of organisms to 
persist in the face of changing conditions. Consider the remarkable fact that every 
organism alive today is the product of billions of generations in which its 
progenitors, without fail, managed to produce progeny that survived to reproduce. 
To achieve this consistency, organisms must have a balance between robustness 
and evolvability, that is, between resisting and allowing change in their own 
internal states 

One important question is whether there exists a single unifying mathematical 
framework that can encompass such diverse examples of biological robustness. 

7.5.4 Biomass Inferential Sensor 

'Biomass Inferential Sensor Based on Ensemble of Models Generated by 
Genetic Programming' is a book about an application to biotechnology. 

A successful industrial application of a novel type biomass estimator based 
on Genetic Programming (GP) is described. The biomass is inferred from other 
available measurements via an ensemble of nonlinear functions, generated by GP. 
The models are selected on the Pareto front of performance-complexity plane. The 
advantages of the proposed inferential sensor are: direct implementation into 
almost any process control system, rudimentary self-assessment capabilities, 
better robustness toward batch variations, and more effective maintenance. The 
biomass inferential sensor has been applied in high cell density microbial 
fermentations. 

7.5.5 Self-healing Mechanisms, Algorithms and Devices 

Self-healing, i.e. diagnose and react to system malfunctions, including 
regeneration of system components (learned e.g. from the regeneration capacity of 
liver). Several different self-healing mechanisms are subject to research. There 
exists research on A Self-healing Mechanism for an Intrusion Tolerance System 
[104].  

The SDH network self-healing mechanism is a very important content in 
research of SDH networks survivability and is also key to ensure network reliability. 
There exists research on Connector-based self-healing mechanism for 
components of a reliable system. Self-healing communication networks inspired by 
the regeneration capacity of the liver seem not to exist.  

A self-healing hybrid sensor network architecture called SASHA is described, 
that is inspired by and co-opts several mechanisms from the Acquired Natural 
Immune System to attain its autonomy, robustness, diversity and adaptability to 
unknown pathogens, and compactness 
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7.5.6 Decentralized Control 

Component-orientated control methods, algorithms, software are still in its 
early days yet. There exists, however research on Decentralized Control which is 
described as follows [105]. 

Several real-world large-scale systems can be viewed as interconnections of 
linear/nonlinear subsystems with constraints on information flow between the 
subsystems. We have addressed the decentralized control problem for large-scale 
systems under various sets of assumptions on the subsystem structures and 
interconnection topologies. We have also applied these results to a variety of 
large-scale systems including power networks, smart structures, and satellite 
formations. Our results on nonlinear control techniques have enabled us to weaken 
the required assumptions on the structures of the individual subsystems and also 
on the interconnection (or coupling) among the subsystems. We have also 
extended the results to include adaptations to compensate for unknown system 
parameters and also to provide robustness to uncertain terms and appended 
nonlinear dynamics. Furthermore, we have investigated techniques to achieve 
decentralized attenuation of disturbance inputs and provided explicit guaranteed 
bounds on the disturbance attenuation along with tuning strategies to achieve 
desired disturbance attenuation properties through the proper choice of controller 
parameters. Decentralization of the control may be achieved both through a 
centralized or a decentralized design of the decentralized controllers. In our 
research, both strategies have been utilized. 

7.6 Emergent Phenomena/Complex Adaptive Systems 

7.6.1 Emergent Robustness 

A grand challenge already identified to become a central goal of research in 
FP7 is understanding robustness as an emergent phenomenon in large, open 
multi-agent complex systems and emergent computing.  

7.6.2 Emergent Computing Workshop: Computation in Cells 

The workshop focussed on molecular and cellular interaction networks as 
computational systems and addressed among others the topic: robustness in 
biochemical networks [106]. 

7.6.3 Centre for Emergent Computing 

The drive behind the Centre for Emergent Computing is the desire to solve 
real problems that people care about [107]. Many industrial and commercial 
problems do not have perfect solutions that can be found in a reasonable time - we 
need methods that find acceptable solutions in the time available. Solutions are 
also required that are robust and which can evolve with changing circumstances. 
Many biological and social systems are very good at doing exactly this, and they 
can give us insight and inspiration into new methods of problem solving. Emergent 
Computing studies and uses biologically and socially inspired systems in which 
complex behaviour at the global level emerges from the interaction of large 
numbers of simple components. 
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7.6.4 Inference of system models, under Uncertainty 

'Complex System Research and Design in ICT' is a talk about Methodologies 
for robust computations on models with uncertainty [108] 

7.6.5 Large Sparse Matrix Problems 

Large Sparse Matrix Problems [109]: The goal of this series of conferences is 
to address the complex issues related to the solution of general sparse matrix 
problems in large-scale real applications and in industrial settings.  The issues 
related to sparse matrix software that are of interest to application scientists and 
industrial users are often fairly different from those on which the academic 
community is focused.  For example, for an application scientist or an industrial 
user, improving robustness may be far more important than finding a method that 
would gain speed.  Memory usage is also an important consideration, but is 
seldom accounted for in academic research on sparse matrix solvers.  As a last 
example, linear systems solved in applications are almost always part of some 
nonlinear iteration (e.g., Newton) or optimization loop.  It is important to consider 
the coupling between the linear and nonlinear parts, instead of focusing on the 
linear systems alone. 

7.6.6 Hierarchical structures from aggregation: emergence of higher level 
behaviour 

As a lesson drawn from studying multcellular systems such as bioartificial 
liver cell systems, network properties at cellular level determine tissue properties of 
cell-cell interaction at the next higher hierarchical level. Based on this result, some 
even more general issues related to nature-inspired information systems can be 
addressed, such as predictability of complexity, robustness of behaviour and order 
in highly complex systems. 

7.6.7 Simulating Emergent Properties in Complex Systems 

Analytical model building and simulation complements the data-based 
approach to system identification of gene regulatory networks, i.e. reverse 
engineering and reconstruction from microarray data, and may guide simulation 
attempts. 

Theory explains the mechanisms involved in interaction and how microscopic 
interactions can give rise to macroscopic complexity which is nothing else than a 
theory of emergence in complex systems. The theory also considers the huge 
degree of natural systems’ robustness towards chaos and stochasic fluctuations, 
phenomena playing a vital role in their self-organized control. In biomedical 
systems self-organized control is closely related to healthiness while its failure is to 
illness. 

The theoretical approach provides lessons from Nature on how to design 
network structures robust to noise and chaos and able to maintain self-organized 
control. 

7.6.8 Principal Goals and Tools in Simulating Emergent Properties in Complex 
Systems 

• The role of  chaos and stochastic fluctuations in robustness and self-organized 
control in networks, reverse engineering from microarray data, Robust network 
design 
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• Attempts to obtain a definition of complex networks in terms of structure, 
dynamics, robustness, emergence 

• Estimation and validation of robustness in multiscale simulation models in 
analogy to multigrid methods in numerics 

 

7.6.9 Preconditioning techniques 

Using preconditioning techniques in large sparse matrix problems in network 
modelling and simulation, considering robustness improvement, computation 
speed gain, memory usage, and linearization as a step in some non-linear iteration 
or optimization loop, as well as parallel processing and object-oriented 
programming [109]. 

7.6.10 Emergent Robustness in a Walnut 

Mark Miller just published his dissertation: Robust Composition: 'Towards a 
Unified Approach to Access Control and Concurrency Control' informed by his 
years of work on the capability-secure E programming language [110]. Great stuff, 
very relevant to the future of highly distributed, concurrent and secure computing, 
i.e., the future of computing, and pretty readable too – I blinked and momentarily 
misread the heading 'Reference Graph Dynamics' (numbered page 66) as 
'Reference Graphs for Dummies'. I’ve only skimmed the document, but Part III, 
Concurrency Control, looks the most interesting and hardest, while Part IV, 
Emergent Robustness should be accessible and thought provoking to anyone with 
marginal technical literacy [111]. 

7.6.11 Emergent robustness in competition between autocatalytic chemical 
networks. 

Résumé/Abstract: The origin of auto-catalytic networks has been proposed as 
an initial step in prebiotic evolution. It is possible to derive simple models where 
auto-catalytic networks naturally arise from simple chemical mixtures. In order for 
such a system to develop, there needs to be some degree of stability, what is 
characterised as 'robustness'. We demonstrate that competing systems generate 
this robustness as they create a distributed network of catalytic pathways. 

7.6.12 Robustness of multi-scale multi-tasking aggregated Systems 

Three-dimensional Bioartificial Human Liver Cell Systems: Model for Dynamic 
Description and Prediction of Hepatozyte Function: 
 
1. Theme and objective  

The focus  lies on investigating the liver cell system under physiological 
conditions by data mining and pattern recognition methods to obtain a rule based 
expert system as a semiquantitative model and a module for hybrid (e.g. fuzzy) 
mathematical modelling to predict the behaviour of the bioartificial system with 
disturbed input. The rule based systems and hybrid mathematical models involve 
previously unknown hypotheses, which will be verified  by crucial experiments with 
the bioartificial human liver cell system designed by these models. The result is a 
robust, standardized and quantitatively and dynamically characterized bioartificial 
human liver cell system that can be used for research and therapy.  
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2. State of the art in science and technology 
Systems Biology aims understanding of structures and of dynamic behaviours 

of the system such as cells and organisms, how to control the system and how to 
design the system such as bioartificial systems [112]. Methods were established to 
understand the design patterns and roles of feedback, redundancy, and modularity 
to attain a high-level of stability and robustness [113]. 
 
3. Expected results 

The bioartificial human liver cell system with hepatocytes in their physiological 
environment including also other human liver cells will be developed and 
characterized in standardized manner using Mini-DNA arrays and other specific 
sensors together with a rule based expert system and hybrid mathematical, e.g. 
dynamic fuzzy models. These models formulate hypotheses for understanding of 
structures on genomic, metabolic and cellular as well as population level.  The 
dynamic behaviours of the model will be compared with that of the experimental 
one to validate the hypotheses about the regulatory networks on epigenetic and 
metabolic level. The model will be used to understand the roles of feedback, 
redundance and modularity, to control the bioartificial system in a desired state 
with a high-level of stability and robustness.  

7.6.13 Sepsis – Data-driven approach to assist and specify metabolomic 
modelling 

Common dynamic simulation of microarray, mass spectrometric and cytologic 
time series data will reveal conditions of the robustness, stability patterns and 
critical states of the predicted network The final aim is understanding sepsis as 
emergent phenomenon in the complex immune system and control of the 
conditions of its emergence in sepsis therapy. 

7.6.14 Work packages of multiscale modeling  

Multi-scale modelling and simulation of artificial organ culture in 
bioreactors 

 
Modelling to design and to control bioartificial systems, such as liver cell 

bioreactors for liver support therapy, are used more and more in medicine. These 
systems and processes have to be designed and controlled in optimal manner. 
Prerequisite to design and control of such complex systems and processes is 
appropriate modelling and simulation. Models should reflect the available 
knowledge and current information status. The optimality criteria are diverse, e.g. 
to stabilize the functional state (of the artificial organ) over long time, with minimum 
cost, with maximum robustness. 

The modeling of bioreactor culture processes concerns different levels from 
balancing of certain ions, via protein-protein, protein-gene, protein-ligand 
interaction, gene-regulation and signal transduction, via cell-population of human 
cells in the bioreactor used for supportive therapy up to the device used for the 
therapy (multi-compartment bioreactor including pumps, membranes and biofilms, 
drug injection system or galenic systems that control the drug release) or devices 
for process monitoring. All these different systems have to be modelled at first in 
separate, modular manner. But they have to be merged and aggreated via certain 
inferfaces and embedded in a more general modeling environment.  
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Four scales must be considered: 
 

1. Microscale: gene regulatory and metabolic networks, data-based (microarray, 
mass spectrometry) 

2. Mesoscale: intercellular interaction, signal transduction networks, data-based 
(cytological, receptor binding assay) 

3. Mesoscale: culture medium chemistry, data-based (ingredient recipe) / 
knowledge-based (biochemistry) 

4. Macroscale: multi-compartment cultural medium, knowledge-based (rheology, 
physicochemistry) 

 
The modelling tools at these scales will be: 
 

1. Reverse engineering to identify major expression products after signalling 
stimulation 

2. Cellular automata to model organ cell population, receptor binding models to 
identify binding ligands 

3. Molecular modelling, Quantitative structure activity relations to identify 
signalling ligands  

4. Compartment model, Balance equations, biochemical rate equations, 
rheological  equations, Finite Element components which use neuro-fuzzy 
hybrid models 

 
Multi-scale modelling and simulation of fermentation of secondary 

metabolites or recombinant proteins 
 

Modelling to design and to control bioartificial systems, such as 
microorganisms that produce recombinant human proteins or secondary 
metabolites are used more and more in biotechnology. These systems and 
processes have to be designed and controlled in optimal manner. The optimal 
design and control is based on models and simulation as a prerequisite. The 
optimality criteria for optimality are diverse, e.g. to maximize the productivity (of 
protein production) or to stabilize the functional state (of product delivery) over long 
time, with minimum cost, with maximum robustness. 

The model focuses on  fermentation either of secondary metabolites or of  
recombinant proteins. The modeling of these processes concerns different levels 
from the balancing of certain ions, via protein-protein, protein-gene, protein-ligand 
interaction, gene-regulation and signal transduction, via cell-population of bacterial 
cells in the bacterial culture up to the device used for fermentation (multi-
compartment fermenter including pumps, membranes and biofilms, substrate 
injection system or galenic systems that control the product release) or device for 
process monitoring. All these different systems have to be modelled at first in 
separate, modular manner. But they have to be merged and aggreated via certain 
inferfaces and embedded in a more general modeling environment. 
  

Four scales must be considered: 
 

1. Microscale: transformation of bacteria by plasmids cloned with eukaryotic 
fragments, data-based 

2. Mesoscale: plasmid replication kinetics and cellular population growth, data-
based 
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3. Mesoscale: gene expression of foreign protein by plasmids and release to 
cultural medium, data-based 

4. Macroscale: multi-compartment cultural medium, knowledge-based (rheology, 
physicochemistry diffusion, population dynamics) 

 
The modelling tools at these scales will be: 
 

1. (Stochastic) transformation kinetics to obtain transformation yield 
2. Hierarchical Cellular automata to model plasmid population growth in bacterial 

cell population growth,  
3. Reverse engineering to identify foreign  expression products after 

transformation stimulation 
4. Compartment model, Balance equations, substrate feeding regime, rheological  

equations, Biomass growth equation, species diffusion equations, Finite 
Element components which use neuro-fuzzy hybrid models 

 
Multi-scale modelling and simulation of host-pathogen interaction 

during infection 
 
Modelling to design and to control virtual immune systems are gaining more 

and more interest in medicine. Virtual Immune systems are computer-assisted 
simulations and visualisations of immune system functions. To achieve optimum 
anti-infectious therapy, these systems and processes have to be designed and 
controlled in optimal manner. The optimality criteria are diverse, e.g. to stabilize 
the functional state (of the therapy) over long time, with minimum cost, with 
maximum robustness. 

The model focuses on the modelling of host-pathogen interaction during 
infection as well as on the therapy infectious diseases. The modeling of these 
processes concerns different levels from  protein-protein, protein-gene, protein-
ligand interaction, gene-regulation and signal transduction, via cell-population of 
human cells in the organ of a patient. All these different systems have to be 
modelled at first in separate, modular manner. But they have to be merged and 
aggreated via certain inferfaces and embedded in a more general modeling 
environment.  
 

Four scales must be considered: 
 

1. Microscale: interaction and function of the components of the innate immune 
system, unperturbed, data-based (immuno assays) 

2. Microscale: response reactions after infectious stimulation, data-based 
(diagnostic and therapeutic assays) 

3. Mesoscale: gene expression of immune proteins and release into blood, data-
based (gene expression time series) 

4. Macroscale: Health state of patient, data-based (clinical data) 
 

The modelling tools at these scales will be: 
 

1. Heterogeneous cellular automata modelling the diverse innate immune system 
components 

2. Modified heterogeneous cellular automata with pathogene cells included ,  
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3. Reverse engineering to identify expressed immune proteins after infection 
stimulation 

4. Compartment model of human body, drug application regime, Finite Element 
components which use neuro-fuzzy hybrid models 

 
Multi-scale modelling and simulation of autoimmune pathogenesis in 

immune system 
 

Modelling to design and to control virtual immune systems are gaining more 
and more interest in medicine. Virtual Immune systems are computer-assisted 
simulations and visualisations of immune system functions. To achieve optimum 
anti-autoimmune therapy, these systems and processes have to be designed and 
controlled in optimal manner. The optimality criteria are diverse, e.g. to maximize 
the productivity (of healthy immune constituents) or to stabilize the functional state 
(of the therapy) over long time, with minimum cost, with maximum robustness. 

The model focuses on the modelling of autoimmune pathogenesis as well as 
on the therapy of autoimmune diseases. The modeling of these processes 
concerns different levels from  protein-protein, protein-gene, protein-ligand 
interaction, gene-regulation and signal transduction, via cell-population of human 
cells in the organ of a patient. All these different systems have to be modelled at 
first in separate, modular manner. But they have to be merged and aggreated via 
certain inferfaces and embedded in a more general modeling environment.  
 

Four scales will be considered: 
 

1. Microscale: interaction and function of the components of the innate immune 
system, unperturbed, data-based (immuno assays) 

2. Microscale: spontaneous emergent transformation of  some component into 
quasi pathogene, data-based (diagnostic and therapeutic assays) 

3. Mesoscale: gene expression of immune proteins and release into blood, data-
based (gene expression time series) 

4. Macroscale: Health state of patient, data-based (clinical data) 
 

The modelling tools at these scales will be: 
 

1. Heterogeneous cellular automata modelling the diverse innate immune system 
components 

2. Modified heterogeneous cellular automata with quasi pathogene cells 
included, pattern recognition 

3. Reverse engineering to identify expressed immune proteins after emergent 
transformation 

4. Compartment model of human body, drug application regime, Finite Element 
components which use neuro-fuzzy hybrid models 

 
This multi-scale modelling and simulation approach involves across-scale 

modelling in time and space. It integrates data-based and knowledge-based 
modules.  

In each of the four cases, the architecture of a prototype  multi-modular model 
system must be designed and applied. Applying this architecture the aggregate 
behaviour must be studied, compared with the real observed behaviour and used 
to improve the architecture of the multi-modular model. 
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In all the four cases, Modules must be tested and simulated individually and 
after merging in common. Simulation results must be documented in terms of 
SBML. 

There must be  provided several variants of constituent model modules and  
user-defined composition of the entire model must be allowed . User-defined 
composition must be guided by SBML code in the background. 

7.6.15 Work packages of dynamic Modeling and Identification of sparse gene-
protein interaction networks 

Based on the existing theory of dynamic Modeling and Identification of sparse 
gene-protein interaction networks, piece-wise linearization (PWL), development of 
a simulation framework has to ask for possibilities for tuning the model to represent 
different situations of network  performance. Once the relevant parameters of 
interaction are known from modeling and identification, their influence on network 
behaviour can be studied by simulation.  More generally, the influence of noise and 
stochasic fluctuations  of  tuned strength and the influence of  tuned sparsness on 
network identifiability and controllability can be studied by simulation, as well as 
the role of noise in the network’s self-organized control and robustness. 

Five Work Packages with asoociated tasks might be isolated. Robust 
identification plays a major role at all scales. For each Work Package an Internet 
search study has been carried out. 
 
WP1 – Tools for system modelling 
Task 1 Single level PWL and state space modelling 
Task 2 Multi-scale PWL modelling 
Task 3 Mapping non-linear systems on multi-scale PWL state space models 
Task 4 Modelling of mode switching 
 
WP2 – Tools for system identification 
Task 1 Identification of PWL systems with rich data 
Task 2 Robust  identification of hierarchic and sparse PWL systems with poor and 
incomplete data 
Task 3  Relation with non-linear systems and multi-scale PWL state space models 
Task 4  Identification of multi-scale PWL systems 
Task 5 Validation of identification methods 
 
WP3 – Testbed selection, implementation and evaluation 
Task 1 Selection and preparation of reference and empirical annotated testbeds 
Task 2 Implementation of testbeds in simulation environment 
Task 3 Testing and validation of testbeds with special attention on emergence of 
complex behaviour and the role of intrinsic noise and chaos 
 
WP4 – Integrated simulation environment 
Task 1 Development and implementation of Integrated simulation environment using 
output of WP1 on model classes and identification tools 
Task 2 Description of design strategies of emergent simulation models 
Task 3 Methodology for generating a simulation model based on temporal data 
 
WP5 – Multiscale analysis and identification of emergent properties 
Task 1 Multi-scale correlation analysis through hierarchical clustering of time series 
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Task 2 Hierarchy detection through multi-resolution analysis of gene-protein  time 
series using optimally designed wavelets 
Task 3 Using network analysis and genetic programming to detect emergent 
complexity in simulated reference and real models 

 
Desirable is the development of  an integrative simulation platforms that 

enables simultaneous access, by means of a formal specification language, to data 
sets, simulation models and result documents for automated comparison. 

Most desirable is the possibility to address several simulation issues 
subsequent to reverse engineering for identification, from microarray data of a 
particular system, at an itegrative platform for modeling, identification and 
simulation. 

Among methodological approaches to large sparse matrix problems in 
network modelling and simulation, it is preconditioning techniques that considers in 
particular  network robustness 

Using preconditioning techniques in large sparse matrix problems in network 
modelling and simulation, considering robustness improvement, computation 
speed gain, memory usage, and linearization as a step in some non-linear iteration 
or optimization loop, as well as parallel processing and object-oriented 
programming 

7.6.16 Multiscale Simulation [114] 

• Conventional Simulation: Nonlinear solver of individual phenomena. 
• Holistic Simulation: Explore the complexity of interdependence between 

microprocesses and macroprocesses 
  

7.6.17 Tutorial on Multiscale Simulation 

Tutorial on Multiscale Simulation (T3005). Overview: This session is a tutorial 
on multiscale modeling, simulation, and analysis. Various techniques will be 
reviewed and examples from different applications will be discussed [115]. Most 
interesting in the present context is topic 3: Multiscale Analysis in Chemical, 
Materials and Biological Processes. 

7.6.18 Towards the Multiscale Simulation of Biochemical Networks 

The ICB Institute for Collaborative Biotechnologies develops tools for Multi-
scale Modeling [116]: The multi-scale modeling component of this proposal will 
address simulation and analysis techniques for: (1) individual devices for 'sensing' 
and 'information processing' as described above; (2) the complex interactions with 
the biological systems (soldiers) that 'respond' and (3) the coordination and 
decision components that link a closed-loop 'sense and respond' system. In 
addition, these investigators will address high level systems integration issues that 
will lead to strategic iterations in sensor and information processing development, 
as the complex multi-scale networks are analyzed for their robustness and fragility 
attributes. 
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7.6.19 Some additional quotations on Robustness 

7.7 Understanding Robustness from First Principles of Non-Equilibrium 
Thermodynamics 

7.7.1 Nonequilibrium Thermodynamics and Nonlinear Kinetics in a Cellular 
Signaling Switch 

The importance of nonequilibrium thermodynamics in analyzing biological 
information processing and signal transduction [117]. We develop a rigorous 
nonequilibrium thermodynamics for an open system of nonlinear biochemical 
reactions responsible for cell signal processing. We show that the quality of the 
biological switch consisting of a phosphorylation-dephosphorylation cycle, such as 
those in protein kinase cascade, is controlled by the available intracellular free 
energy from the adenosine triphosphate (ATP) hydrolysis in vivo: ∆G = 
kBTln([ATP]/Keq[ADP]), where Keq is the equilibrium constant. The model reveals 
the correlation between the performance of the switch and the level of ∆G. The 
result demonstrates the importance of nonequilibrium thermodynamics in analyzing 
biological information processing, provides its energetic cost, establishes an 
interplay between signal transduction and energy metabolism in cells, and 
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suggests a biological function for phosphoenergetics in the ubiquitous 
phosphorylation signaling. 

7.7.2 Inspiration from Nature By Understanding Complex Systems and 
Emergent Robustness from First Principles of Non-Equilibrium 
Thermodynamics 

Like complexity research, NiSIS has three main goals 
 

• To elaborate the concepts, methods and tools of self-organizing dynamical 
systems at all levels of description and in all scientific fields, especially newly 
emerging areas within Life, Social, Behavioural, Economic, Neuro and 
Cognitive Sciences 

• To encourage novel applications of these ideas in various fields of Engineering 
and Computation such as robotics, nanotechnology and informatics 

• To provide a forum within which commonalities and differences in the workings 
of complex systems may be discerned, hence leading to a deeper insight and 
understanding. 

  
7.7.3 Non-Equilibrium Thermodynamics and the Production of Entropy 

The book 'Non-Equilibrium Thermodynamics and the production of entropy – 
Life, Earth and Beyond centres on the interaction of Biosphere and Geosphere, of 
vegetation and climate [118]. Nevertheless, this book gives a strong hope that an 
integral principle, Maximum Entropy Production (MEP), is at work in all open 
systems with large distance to thermodynamic equilibrium, i.e. those governed by 
non-linear thermodynamics like the Earth, thus in particular in living systems. The 
principles of Minimum und Maximum Entropy Production are explained as well as 
associated concepts of macroscopic reproducibility – the key concept behind 
thermodynamics and self-organized criticality. 

This book contains, in addition to purely physical processes, attempts to 
integrate life as it enhances diabatic processes through evapotranspiration, higher 
surface roughness and higher emissivity. Life intensifies the global cycles of water, 
carbon and nitrogen. If all thermodynamic systems far from equilibrium are subject 
to MEP, Life on Earth included, it would also be a governing principle for the 
evolution and maintenance of the Earth system as well as the evolution and 
maintenance of Life. Life, Earth and Beyond do not only speak a common 
language, but are also governed by common principles and have a common 
Nature. 

With respect to NiSIS, Nature-inspired Smart Information Systems or Smart 
Adaptive Systems, a fundamental analysis of living systems, of their evolution and 
maintenance, seems to be important. At present, living systems like gene 
regulatory networks, metabolic networks, signal transduction networks are 
analysed in two ways. Either , the analysis is based on microarray data or mass 
spectroscopic data and is done by data mining methods to yield data-based 
models. Or, the analysis is based on ad hoc kinetic models of these networks 
derived from molecular mechanisms of gene regulation and gene expression. 
Fundamental analysis of living systems, however, means to consider them as 
complex self-organized dynamical systems of many degrees of freedom in far from 
equilibrium conditions, and to use Maximum Entropy Production as a governing 
principle for the evolution and maintenance of living systems. This type of analysis 
would reveal the true reason why a particular living system is robust, reproducible 
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and adaptive and another one is not. This type of analysis would use criteria for 
living systems to exhibit these properties and behaviour. 

Data-based modelling does not provide such criteria. Kinetics-based 
modelling detects a posteriori whether a particular kinetic model behaves robust 
but does not explain the reason why. Fundamental analysis in terms of Non-
Equilibrium Thermodynamics, however, provides criteria for robustness, 
reproducibility and adaptability, essentially independent of a particular model 
parametrization.  It furnishes a theoretical explanation for the interrelation of 
robustness, reproducibility and adaptability which is already obvious from common 
sense. When living in changing environmental conditions, a living system has to be 
robust versus perturbation in order to be reproducible, rather than to be subject to 
decay, unless it is adaptive to new environmental conditions.  

To be instructive to technological design of Smart Information Systems or to 
design of computational algorithms, a living system has to be understood in terms 
of fundamental principles. In order to be inspirative, the design principles of a living 
system must be identified to be transferred and must be distinguished from the 
pecularities of the inspired system. 

 
Important issues are 
 

• Multiscale Simulation 
• Emergent Robustness 
• Emergent Multitasking 
• Understanding Complex Systems from First Principles of Non-Equilibrium 

Thermodynamics 
 
Complex Systems of Biosphere, Geosphere, Technosphere, Sociosphere, 

and Cognosphere (the brain) are governed by common principles of entropy 
production in far from equilibrium conditions.  

Common principles of entropy production in Non-Equilibrium 
Thermodynamics for complex systems enable inspiration from Nature for 
technology and for cognition. 

The differences lay in the models of the natural phenomenon at one hand and 
the model of the inspired counterpart  in information technology or algorithmic 
computation at the other hand. Examples of natural phenomena as sources of 
inspiration can be found both in Karl Bayer’s Task Force on Analysis of metabolic 
control strategies and in Sebastian Zellmer’s Task Force on Multitasking of Liver 
Tissue. 

Complex systems comprise many interacting parts with the ability to generate 
a new quality of macroscopic collective behaviour through self-organization 
(emergent phenomena), i.e. the spontaneous formation of temporal, spatial or 
functional structures. As philosophers have told us since long ago, the whole is 
more than the sum of its parts. The recognition that collective behaviour can not be 
inferred from understanding the behaviour of the constituent parts, has led to 
various new concepts and tools of complexity research, such as self-organisation, 
complex systems, synergetics, dynamical systems, turbulence, catastrophes, 
instabilities, non-linearity, stochastic processes, chaos, neural networks, cellular 
automata, adaptive systems, genetic algorithms. 

The topics treated are divers and the field of applications is very broad; it 
comprises complex systems of all spheres, both in the inorganic and the organic or 
living world., e.g. lasers, fluids in physics, electric circuits in engineering, growth of 
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crystals in chemistry, morphogenisis, metabolic control, and adaptation in biology, 
cancerogenesis in medicine, stock exchange rates in economics, formation of 
public opinion in sociology, brain function in neurology. 

All these seemingly quite different kinds of structure formation have a number 
of important features and principles in common. These deep structural similarities 
can be exploited to transfer analytical methods and understanding from one field to 
another. Complexity is transdisciplinary. 
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